Research on an Ankle Joint Auxiliary Rehabilitation Robot with a Rigid-Flexible Hybrid Drive Based on a 2-S'PS' Mechanism

An ankle joint auxiliary rehabilitation robot has been developed, which consists of an upper platform, a lower platform, a dorsiflexion/plantar flexion drive system, a varus/valgus drive system, and some connecting parts. The upper platform connects to the lower platform through a ball pin pair and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied bionics and biomechanics 2019, Vol.2019, p.7071064-7071064
Hauptverfasser: Wang, Caidong, Wang, Liangwen, Wang, Tuanhui, Li, Hongpeng, Du, Wenliao, Meng, Fannian, Zhang, Weiwei
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7071064
container_issue
container_start_page 7071064
container_title Applied bionics and biomechanics
container_volume 2019
creator Wang, Caidong
Wang, Liangwen
Wang, Tuanhui
Li, Hongpeng
Du, Wenliao
Meng, Fannian
Zhang, Weiwei
description An ankle joint auxiliary rehabilitation robot has been developed, which consists of an upper platform, a lower platform, a dorsiflexion/plantar flexion drive system, a varus/valgus drive system, and some connecting parts. The upper platform connects to the lower platform through a ball pin pair and two driving branch chains based on the S'PS' mechanism. Although the robot has two degrees of freedom (DOF), the upper platform can realize three kinds of motion. To achieve ankle joint auxiliary rehabilitation, the ankle joint of patients on the upper platform makes a bionic motion. The robot uses a centre ball pin pair as the main support to simulate the motion of the ankle joint; the upper platform and the centre ball pin pair construct a mirror image of a patient's foot and ankle joint, which satisfies the human body physiological characteristics; the driving systems adopt a rigid-flexible hybrid structure; and the dorsiflexion/plantar flexion motion and the varus/valgus motion are decoupled. These structural features can avoid secondary damage to the patient. The rehabilitation process is considered, and energy consumption of the robot is studied. An experimental prototype demonstrates that the robot can simulate the motion of the human foot.
doi_str_mv 10.1155/2019/7071064
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2270014102</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2270014102</sourcerecordid><originalsourceid>FETCH-LOGICAL-p560-5cc032c8931e6188241a0db4dbe0413939704d46c7c3b847ea407af01ab6497d3</originalsourceid><addsrcrecordid>eNo1kD1PwzAYhD2AaClszMhbWQKvPxInYymUgopAaffIjt8SQ5qUOIH23xNBme6G5066I-SCwTVjYXjDgSU3ChSDSB6RIWMqCrjgfEBOvX8HCJkEcUIGgokk4gkMyT5Fj7rJC1pXVFd0Un2USJ9qV7V00u1c6XSzpykW2vS-1a3rubQ2dUu_XVtQTVP35mwwK3HnTB-d703jLL1r3BfSW-3R_jZTHizHr8sxfca80JXzmzNyvNalx_ODjshqdr-azoPFy8PjdLIItmEEQZjnIHgeJ4JhxOKYS6bBGmkNguxXiESBtDLKVS5MLBVqCUqvgWkTyURZMSJXf7Xbpv7s0LfZxvkcy1JXWHc-41wBMMmA9-jlAe3MBm22bdymX5_9vyV-AMA7Z1A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2270014102</pqid></control><display><type>article</type><title>Research on an Ankle Joint Auxiliary Rehabilitation Robot with a Rigid-Flexible Hybrid Drive Based on a 2-S'PS' Mechanism</title><source>PubMed Central 开放获取</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Wang, Caidong ; Wang, Liangwen ; Wang, Tuanhui ; Li, Hongpeng ; Du, Wenliao ; Meng, Fannian ; Zhang, Weiwei</creator><creatorcontrib>Wang, Caidong ; Wang, Liangwen ; Wang, Tuanhui ; Li, Hongpeng ; Du, Wenliao ; Meng, Fannian ; Zhang, Weiwei</creatorcontrib><description>An ankle joint auxiliary rehabilitation robot has been developed, which consists of an upper platform, a lower platform, a dorsiflexion/plantar flexion drive system, a varus/valgus drive system, and some connecting parts. The upper platform connects to the lower platform through a ball pin pair and two driving branch chains based on the S'PS' mechanism. Although the robot has two degrees of freedom (DOF), the upper platform can realize three kinds of motion. To achieve ankle joint auxiliary rehabilitation, the ankle joint of patients on the upper platform makes a bionic motion. The robot uses a centre ball pin pair as the main support to simulate the motion of the ankle joint; the upper platform and the centre ball pin pair construct a mirror image of a patient's foot and ankle joint, which satisfies the human body physiological characteristics; the driving systems adopt a rigid-flexible hybrid structure; and the dorsiflexion/plantar flexion motion and the varus/valgus motion are decoupled. These structural features can avoid secondary damage to the patient. The rehabilitation process is considered, and energy consumption of the robot is studied. An experimental prototype demonstrates that the robot can simulate the motion of the human foot.</description><identifier>ISSN: 1176-2322</identifier><identifier>DOI: 10.1155/2019/7071064</identifier><identifier>PMID: 31396290</identifier><language>eng</language><publisher>Egypt</publisher><ispartof>Applied bionics and biomechanics, 2019, Vol.2019, p.7071064-7071064</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-5378-0480 ; 0000-0001-9859-1918 ; 0000-0001-7490-1133 ; 0000-0003-2583-4207</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31396290$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Caidong</creatorcontrib><creatorcontrib>Wang, Liangwen</creatorcontrib><creatorcontrib>Wang, Tuanhui</creatorcontrib><creatorcontrib>Li, Hongpeng</creatorcontrib><creatorcontrib>Du, Wenliao</creatorcontrib><creatorcontrib>Meng, Fannian</creatorcontrib><creatorcontrib>Zhang, Weiwei</creatorcontrib><title>Research on an Ankle Joint Auxiliary Rehabilitation Robot with a Rigid-Flexible Hybrid Drive Based on a 2-S'PS' Mechanism</title><title>Applied bionics and biomechanics</title><addtitle>Appl Bionics Biomech</addtitle><description>An ankle joint auxiliary rehabilitation robot has been developed, which consists of an upper platform, a lower platform, a dorsiflexion/plantar flexion drive system, a varus/valgus drive system, and some connecting parts. The upper platform connects to the lower platform through a ball pin pair and two driving branch chains based on the S'PS' mechanism. Although the robot has two degrees of freedom (DOF), the upper platform can realize three kinds of motion. To achieve ankle joint auxiliary rehabilitation, the ankle joint of patients on the upper platform makes a bionic motion. The robot uses a centre ball pin pair as the main support to simulate the motion of the ankle joint; the upper platform and the centre ball pin pair construct a mirror image of a patient's foot and ankle joint, which satisfies the human body physiological characteristics; the driving systems adopt a rigid-flexible hybrid structure; and the dorsiflexion/plantar flexion motion and the varus/valgus motion are decoupled. These structural features can avoid secondary damage to the patient. The rehabilitation process is considered, and energy consumption of the robot is studied. An experimental prototype demonstrates that the robot can simulate the motion of the human foot.</description><issn>1176-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo1kD1PwzAYhD2AaClszMhbWQKvPxInYymUgopAaffIjt8SQ5qUOIH23xNBme6G5066I-SCwTVjYXjDgSU3ChSDSB6RIWMqCrjgfEBOvX8HCJkEcUIGgokk4gkMyT5Fj7rJC1pXVFd0Un2USJ9qV7V00u1c6XSzpykW2vS-1a3rubQ2dUu_XVtQTVP35mwwK3HnTB-d703jLL1r3BfSW-3R_jZTHizHr8sxfca80JXzmzNyvNalx_ODjshqdr-azoPFy8PjdLIItmEEQZjnIHgeJ4JhxOKYS6bBGmkNguxXiESBtDLKVS5MLBVqCUqvgWkTyURZMSJXf7Xbpv7s0LfZxvkcy1JXWHc-41wBMMmA9-jlAe3MBm22bdymX5_9vyV-AMA7Z1A</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Wang, Caidong</creator><creator>Wang, Liangwen</creator><creator>Wang, Tuanhui</creator><creator>Li, Hongpeng</creator><creator>Du, Wenliao</creator><creator>Meng, Fannian</creator><creator>Zhang, Weiwei</creator><scope>NPM</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5378-0480</orcidid><orcidid>https://orcid.org/0000-0001-9859-1918</orcidid><orcidid>https://orcid.org/0000-0001-7490-1133</orcidid><orcidid>https://orcid.org/0000-0003-2583-4207</orcidid></search><sort><creationdate>2019</creationdate><title>Research on an Ankle Joint Auxiliary Rehabilitation Robot with a Rigid-Flexible Hybrid Drive Based on a 2-S'PS' Mechanism</title><author>Wang, Caidong ; Wang, Liangwen ; Wang, Tuanhui ; Li, Hongpeng ; Du, Wenliao ; Meng, Fannian ; Zhang, Weiwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p560-5cc032c8931e6188241a0db4dbe0413939704d46c7c3b847ea407af01ab6497d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Caidong</creatorcontrib><creatorcontrib>Wang, Liangwen</creatorcontrib><creatorcontrib>Wang, Tuanhui</creatorcontrib><creatorcontrib>Li, Hongpeng</creatorcontrib><creatorcontrib>Du, Wenliao</creatorcontrib><creatorcontrib>Meng, Fannian</creatorcontrib><creatorcontrib>Zhang, Weiwei</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Applied bionics and biomechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Caidong</au><au>Wang, Liangwen</au><au>Wang, Tuanhui</au><au>Li, Hongpeng</au><au>Du, Wenliao</au><au>Meng, Fannian</au><au>Zhang, Weiwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Research on an Ankle Joint Auxiliary Rehabilitation Robot with a Rigid-Flexible Hybrid Drive Based on a 2-S'PS' Mechanism</atitle><jtitle>Applied bionics and biomechanics</jtitle><addtitle>Appl Bionics Biomech</addtitle><date>2019</date><risdate>2019</risdate><volume>2019</volume><spage>7071064</spage><epage>7071064</epage><pages>7071064-7071064</pages><issn>1176-2322</issn><abstract>An ankle joint auxiliary rehabilitation robot has been developed, which consists of an upper platform, a lower platform, a dorsiflexion/plantar flexion drive system, a varus/valgus drive system, and some connecting parts. The upper platform connects to the lower platform through a ball pin pair and two driving branch chains based on the S'PS' mechanism. Although the robot has two degrees of freedom (DOF), the upper platform can realize three kinds of motion. To achieve ankle joint auxiliary rehabilitation, the ankle joint of patients on the upper platform makes a bionic motion. The robot uses a centre ball pin pair as the main support to simulate the motion of the ankle joint; the upper platform and the centre ball pin pair construct a mirror image of a patient's foot and ankle joint, which satisfies the human body physiological characteristics; the driving systems adopt a rigid-flexible hybrid structure; and the dorsiflexion/plantar flexion motion and the varus/valgus motion are decoupled. These structural features can avoid secondary damage to the patient. The rehabilitation process is considered, and energy consumption of the robot is studied. An experimental prototype demonstrates that the robot can simulate the motion of the human foot.</abstract><cop>Egypt</cop><pmid>31396290</pmid><doi>10.1155/2019/7071064</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-5378-0480</orcidid><orcidid>https://orcid.org/0000-0001-9859-1918</orcidid><orcidid>https://orcid.org/0000-0001-7490-1133</orcidid><orcidid>https://orcid.org/0000-0003-2583-4207</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1176-2322
ispartof Applied bionics and biomechanics, 2019, Vol.2019, p.7071064-7071064
issn 1176-2322
language eng
recordid cdi_proquest_miscellaneous_2270014102
source PubMed Central 开放获取; DOAJ Directory of Open Access Journals; Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
title Research on an Ankle Joint Auxiliary Rehabilitation Robot with a Rigid-Flexible Hybrid Drive Based on a 2-S'PS' Mechanism
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T17%3A46%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Research%20on%20an%20Ankle%20Joint%20Auxiliary%20Rehabilitation%20Robot%20with%20a%20Rigid-Flexible%20Hybrid%20Drive%20Based%20on%20a%202-S'PS'%20Mechanism&rft.jtitle=Applied%20bionics%20and%20biomechanics&rft.au=Wang,%20Caidong&rft.date=2019&rft.volume=2019&rft.spage=7071064&rft.epage=7071064&rft.pages=7071064-7071064&rft.issn=1176-2322&rft_id=info:doi/10.1155/2019/7071064&rft_dat=%3Cproquest_pubme%3E2270014102%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2270014102&rft_id=info:pmid/31396290&rfr_iscdi=true