Highly Conductive Doped Hybrid Carbon Nanotube–Graphene Wires

The following paper explores the nature of electronic transport in a hybrid carbon nanotube–graphene conductive network. These networks may have a tremendous impact on the future formation of new electrical conductors, batteries, and supercapacitors, as well as many other electronic and electrical a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2019-09, Vol.11 (36), p.33207-33220
Hauptverfasser: Lepak-Kuc, Sandra, Milowska, Karolina Z, Boncel, Slawomir, Szybowicz, Miroslaw, Dychalska, Anna, Jozwik, Iwona, Koziol, Krzysztof K, Jakubowska, Malgorzata, Lekawa-Raus, Agnieszka
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 33220
container_issue 36
container_start_page 33207
container_title ACS applied materials & interfaces
container_volume 11
creator Lepak-Kuc, Sandra
Milowska, Karolina Z
Boncel, Slawomir
Szybowicz, Miroslaw
Dychalska, Anna
Jozwik, Iwona
Koziol, Krzysztof K
Jakubowska, Malgorzata
Lekawa-Raus, Agnieszka
description The following paper explores the nature of electronic transport in a hybrid carbon nanotube–graphene conductive network. These networks may have a tremendous impact on the future formation of new electrical conductors, batteries, and supercapacitors, as well as many other electronic and electrical applications. The experiments described show that the deposition of graphene nanoflakes within a carbon nanotube network improves both its electrical conductivity and its current-carrying capacity. They also show that the effectiveness of doping is enhanced. To explain the effects observed in the hybrid carbon nanotube–graphene conductive network, a theoretical model was developed. The theory explains that graphenes are not merely effective conductive fillers of the carbon nanotube networks but also effective bridges that are able to introduce additional states at the Fermi level of carbon nanotubes.
doi_str_mv 10.1021/acsami.9b08198
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2270006847</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2270006847</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-8e9ce7d4c22525ecccac5cc2070e30a9a416cf3b5929c103de7d93752ac298aa3</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EoqWwMqKMCCnFH0kTTwgFaJEqWECM1sW50lRJHOwEqRv_gX_IL8EohY3pbnjeV3cPIaeMThnl7BK0g7qcypymTKZ7ZMxkFIUpj_n-3x5FI3Lk3IbSmeA0PiQjwYQUVMoxuVqUr-tqG2SmKXrdle8Y3JgWi2CxzW1ZBBnY3DTBAzSm63P8-vicW2jX2GDwUlp0x-RgBZXDk92ckOe726dsES4f5_fZ9TIEIWgXpig1JkWkub8sRq016FhrThOKgoKEiM30SuSx5FIzKgoPS5HEHDSXKYCYkPOht7XmrUfXqbp0GqsKGjS9U5wn1P-XRolHpwOqrXHO4kq1tqzBbhWj6keaGqSpnTQfONt193mNxR_-a8kDFwPgg2pjetv4V_9r-wY-lHeD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2270006847</pqid></control><display><type>article</type><title>Highly Conductive Doped Hybrid Carbon Nanotube–Graphene Wires</title><source>American Chemical Society Journals</source><creator>Lepak-Kuc, Sandra ; Milowska, Karolina Z ; Boncel, Slawomir ; Szybowicz, Miroslaw ; Dychalska, Anna ; Jozwik, Iwona ; Koziol, Krzysztof K ; Jakubowska, Malgorzata ; Lekawa-Raus, Agnieszka</creator><creatorcontrib>Lepak-Kuc, Sandra ; Milowska, Karolina Z ; Boncel, Slawomir ; Szybowicz, Miroslaw ; Dychalska, Anna ; Jozwik, Iwona ; Koziol, Krzysztof K ; Jakubowska, Malgorzata ; Lekawa-Raus, Agnieszka</creatorcontrib><description>The following paper explores the nature of electronic transport in a hybrid carbon nanotube–graphene conductive network. These networks may have a tremendous impact on the future formation of new electrical conductors, batteries, and supercapacitors, as well as many other electronic and electrical applications. The experiments described show that the deposition of graphene nanoflakes within a carbon nanotube network improves both its electrical conductivity and its current-carrying capacity. They also show that the effectiveness of doping is enhanced. To explain the effects observed in the hybrid carbon nanotube–graphene conductive network, a theoretical model was developed. The theory explains that graphenes are not merely effective conductive fillers of the carbon nanotube networks but also effective bridges that are able to introduce additional states at the Fermi level of carbon nanotubes.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.9b08198</identifier><identifier>PMID: 31393099</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS applied materials &amp; interfaces, 2019-09, Vol.11 (36), p.33207-33220</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a330t-8e9ce7d4c22525ecccac5cc2070e30a9a416cf3b5929c103de7d93752ac298aa3</citedby><cites>FETCH-LOGICAL-a330t-8e9ce7d4c22525ecccac5cc2070e30a9a416cf3b5929c103de7d93752ac298aa3</cites><orcidid>0000-0001-8241-1476 ; 0000-0001-5465-2985 ; 0000-0002-0787-5243 ; 0000-0002-1765-759X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.9b08198$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.9b08198$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31393099$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lepak-Kuc, Sandra</creatorcontrib><creatorcontrib>Milowska, Karolina Z</creatorcontrib><creatorcontrib>Boncel, Slawomir</creatorcontrib><creatorcontrib>Szybowicz, Miroslaw</creatorcontrib><creatorcontrib>Dychalska, Anna</creatorcontrib><creatorcontrib>Jozwik, Iwona</creatorcontrib><creatorcontrib>Koziol, Krzysztof K</creatorcontrib><creatorcontrib>Jakubowska, Malgorzata</creatorcontrib><creatorcontrib>Lekawa-Raus, Agnieszka</creatorcontrib><title>Highly Conductive Doped Hybrid Carbon Nanotube–Graphene Wires</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>The following paper explores the nature of electronic transport in a hybrid carbon nanotube–graphene conductive network. These networks may have a tremendous impact on the future formation of new electrical conductors, batteries, and supercapacitors, as well as many other electronic and electrical applications. The experiments described show that the deposition of graphene nanoflakes within a carbon nanotube network improves both its electrical conductivity and its current-carrying capacity. They also show that the effectiveness of doping is enhanced. To explain the effects observed in the hybrid carbon nanotube–graphene conductive network, a theoretical model was developed. The theory explains that graphenes are not merely effective conductive fillers of the carbon nanotube networks but also effective bridges that are able to introduce additional states at the Fermi level of carbon nanotubes.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAQhi0EoqWwMqKMCCnFH0kTTwgFaJEqWECM1sW50lRJHOwEqRv_gX_IL8EohY3pbnjeV3cPIaeMThnl7BK0g7qcypymTKZ7ZMxkFIUpj_n-3x5FI3Lk3IbSmeA0PiQjwYQUVMoxuVqUr-tqG2SmKXrdle8Y3JgWi2CxzW1ZBBnY3DTBAzSm63P8-vicW2jX2GDwUlp0x-RgBZXDk92ckOe726dsES4f5_fZ9TIEIWgXpig1JkWkub8sRq016FhrThOKgoKEiM30SuSx5FIzKgoPS5HEHDSXKYCYkPOht7XmrUfXqbp0GqsKGjS9U5wn1P-XRolHpwOqrXHO4kq1tqzBbhWj6keaGqSpnTQfONt193mNxR_-a8kDFwPgg2pjetv4V_9r-wY-lHeD</recordid><startdate>20190911</startdate><enddate>20190911</enddate><creator>Lepak-Kuc, Sandra</creator><creator>Milowska, Karolina Z</creator><creator>Boncel, Slawomir</creator><creator>Szybowicz, Miroslaw</creator><creator>Dychalska, Anna</creator><creator>Jozwik, Iwona</creator><creator>Koziol, Krzysztof K</creator><creator>Jakubowska, Malgorzata</creator><creator>Lekawa-Raus, Agnieszka</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8241-1476</orcidid><orcidid>https://orcid.org/0000-0001-5465-2985</orcidid><orcidid>https://orcid.org/0000-0002-0787-5243</orcidid><orcidid>https://orcid.org/0000-0002-1765-759X</orcidid></search><sort><creationdate>20190911</creationdate><title>Highly Conductive Doped Hybrid Carbon Nanotube–Graphene Wires</title><author>Lepak-Kuc, Sandra ; Milowska, Karolina Z ; Boncel, Slawomir ; Szybowicz, Miroslaw ; Dychalska, Anna ; Jozwik, Iwona ; Koziol, Krzysztof K ; Jakubowska, Malgorzata ; Lekawa-Raus, Agnieszka</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-8e9ce7d4c22525ecccac5cc2070e30a9a416cf3b5929c103de7d93752ac298aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lepak-Kuc, Sandra</creatorcontrib><creatorcontrib>Milowska, Karolina Z</creatorcontrib><creatorcontrib>Boncel, Slawomir</creatorcontrib><creatorcontrib>Szybowicz, Miroslaw</creatorcontrib><creatorcontrib>Dychalska, Anna</creatorcontrib><creatorcontrib>Jozwik, Iwona</creatorcontrib><creatorcontrib>Koziol, Krzysztof K</creatorcontrib><creatorcontrib>Jakubowska, Malgorzata</creatorcontrib><creatorcontrib>Lekawa-Raus, Agnieszka</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lepak-Kuc, Sandra</au><au>Milowska, Karolina Z</au><au>Boncel, Slawomir</au><au>Szybowicz, Miroslaw</au><au>Dychalska, Anna</au><au>Jozwik, Iwona</au><au>Koziol, Krzysztof K</au><au>Jakubowska, Malgorzata</au><au>Lekawa-Raus, Agnieszka</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly Conductive Doped Hybrid Carbon Nanotube–Graphene Wires</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2019-09-11</date><risdate>2019</risdate><volume>11</volume><issue>36</issue><spage>33207</spage><epage>33220</epage><pages>33207-33220</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>The following paper explores the nature of electronic transport in a hybrid carbon nanotube–graphene conductive network. These networks may have a tremendous impact on the future formation of new electrical conductors, batteries, and supercapacitors, as well as many other electronic and electrical applications. The experiments described show that the deposition of graphene nanoflakes within a carbon nanotube network improves both its electrical conductivity and its current-carrying capacity. They also show that the effectiveness of doping is enhanced. To explain the effects observed in the hybrid carbon nanotube–graphene conductive network, a theoretical model was developed. The theory explains that graphenes are not merely effective conductive fillers of the carbon nanotube networks but also effective bridges that are able to introduce additional states at the Fermi level of carbon nanotubes.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31393099</pmid><doi>10.1021/acsami.9b08198</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-8241-1476</orcidid><orcidid>https://orcid.org/0000-0001-5465-2985</orcidid><orcidid>https://orcid.org/0000-0002-0787-5243</orcidid><orcidid>https://orcid.org/0000-0002-1765-759X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2019-09, Vol.11 (36), p.33207-33220
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2270006847
source American Chemical Society Journals
title Highly Conductive Doped Hybrid Carbon Nanotube–Graphene Wires
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T11%3A49%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20Conductive%20Doped%20Hybrid%20Carbon%20Nanotube%E2%80%93Graphene%20Wires&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Lepak-Kuc,%20Sandra&rft.date=2019-09-11&rft.volume=11&rft.issue=36&rft.spage=33207&rft.epage=33220&rft.pages=33207-33220&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.9b08198&rft_dat=%3Cproquest_cross%3E2270006847%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2270006847&rft_id=info:pmid/31393099&rfr_iscdi=true