A machine learning‐assisted decision‐support model to better identify patients with prostate cancer requiring an extended pelvic lymph node dissection

Objectives To develop a machine learning (ML)‐assisted model to identify candidates for extended pelvic lymph node dissection (ePLND) in prostate cancer by integrating clinical, biopsy, and precisely defined magnetic resonance imaging (MRI) findings. Patients and Methods In all, 248 patients treated...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BJU international 2019-12, Vol.124 (6), p.972-983
Hauptverfasser: Hou, Ying, Bao, Mei‐Ling, Wu, Chen‐Jiang, Zhang, Jing, Zhang, Yu‐Dong, Shi, Hai‐Bin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 983
container_issue 6
container_start_page 972
container_title BJU international
container_volume 124
creator Hou, Ying
Bao, Mei‐Ling
Wu, Chen‐Jiang
Zhang, Jing
Zhang, Yu‐Dong
Shi, Hai‐Bin
description Objectives To develop a machine learning (ML)‐assisted model to identify candidates for extended pelvic lymph node dissection (ePLND) in prostate cancer by integrating clinical, biopsy, and precisely defined magnetic resonance imaging (MRI) findings. Patients and Methods In all, 248 patients treated with radical prostatectomy and ePLND or PLND were included. ML‐assisted models were developed from 18 integrated features using logistic regression (LR), support vector machine (SVM), and random forests (RFs). The models were compared to the Memorial SloanKettering Cancer Center (MSKCC) nomogram using receiver operating characteristic‐derived area under the curve (AUC) calibration plots and decision curve analysis (DCA). Results A total of 59/248 (23.8%) lymph node invasions (LNIs) were identified at surgery. The predictive accuracy of the ML‐based models, with (+) or without (−) MRI‐reported LNI, yielded similar AUCs (RFs+/RFs−: 0.906/0.885; SVM+/SVM−: 0.891/0.868; LR+/LR−: 0.886/0.882) and were higher than the MSKCC nomogram (0.816; P 
doi_str_mv 10.1111/bju.14892
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2270006245</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2317759025</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3532-57a26dcec6460f5b222dc92a46845d313fb955a9661db6b0e4f5da83ff2645293</originalsourceid><addsrcrecordid>eNp1kcFOFTEUhhuiAQQWvoBp4gYXF9pO2zuzRKKoIXEDCbum057x9mamM7Qd4e58BNc-nk_CwQsuTOymJydfvp7Tn5DXnJ1wPKftej7hsm7EDtnnUsuF5OzmxXPNGr1HXuW8ZgwbWu2SvYpXjahZvU9-ndHBulWIQHuwKYb47fePnzbnkAt46sGFHMaIvTxP05gKHUYPPS0jbaEUSDR4iCV0GzrZErDM9C6UFZ3SmIstQJ2NDrEEt3NIqKc2UrgvED36J-i_B0f7zTCtaEQz9SFncAXfPCQvO9tnOHq6D8j1xw9X558Wl18vPp-fXS5cpSqxUEsrtHfgtNSsU60QwrtGWKlrqTxu2rWNUrbRmvtWtwxkp7ytq64TWirRVAfkeOvFkW9nyMUMITvoexthnLMRYskY00IqRN_-g67HOUWczoiKL5eqYeKRerelHP5BTtCZKYXBpo3hzDwGZjAw8ycwZN88Ged2AP-XfE4IgdMtcBd62PzfZN5_ud4qHwAaY6SN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2317759025</pqid></control><display><type>article</type><title>A machine learning‐assisted decision‐support model to better identify patients with prostate cancer requiring an extended pelvic lymph node dissection</title><source>Wiley Journals</source><creator>Hou, Ying ; Bao, Mei‐Ling ; Wu, Chen‐Jiang ; Zhang, Jing ; Zhang, Yu‐Dong ; Shi, Hai‐Bin</creator><creatorcontrib>Hou, Ying ; Bao, Mei‐Ling ; Wu, Chen‐Jiang ; Zhang, Jing ; Zhang, Yu‐Dong ; Shi, Hai‐Bin</creatorcontrib><description>Objectives To develop a machine learning (ML)‐assisted model to identify candidates for extended pelvic lymph node dissection (ePLND) in prostate cancer by integrating clinical, biopsy, and precisely defined magnetic resonance imaging (MRI) findings. Patients and Methods In all, 248 patients treated with radical prostatectomy and ePLND or PLND were included. ML‐assisted models were developed from 18 integrated features using logistic regression (LR), support vector machine (SVM), and random forests (RFs). The models were compared to the Memorial SloanKettering Cancer Center (MSKCC) nomogram using receiver operating characteristic‐derived area under the curve (AUC) calibration plots and decision curve analysis (DCA). Results A total of 59/248 (23.8%) lymph node invasions (LNIs) were identified at surgery. The predictive accuracy of the ML‐based models, with (+) or without (−) MRI‐reported LNI, yielded similar AUCs (RFs+/RFs−: 0.906/0.885; SVM+/SVM−: 0.891/0.868; LR+/LR−: 0.886/0.882) and were higher than the MSKCC nomogram (0.816; P &lt; 0.001). The calibration of the MSKCC nomogram tended to underestimate LNI risk across the entire range of predicted probabilities compared to the ML‐assisted models. The DCA showed that the ML‐assisted models significantly improved risk prediction at a risk threshold of ≤80% compared to the MSKCC nomogram. If ePLNDs missed was controlled at &lt;3%, both RFs+ and RFs− resulted in a higher positive predictive value (51.4%/49.6% vs 40.3%), similar negative predictive value (97.2%/97.8% vs 97.2%), and higher number of ePLNDs spared (56.9%/54.4% vs 43.9%) compared to the MSKCC nomogram. Conclusions Our ML‐based model, with a 5–15% cutoff, is superior to the MSKCC nomogram, sparing ≥50% of ePLNDs with a risk of missing &lt;3% of LNIs.</description><identifier>ISSN: 1464-4096</identifier><identifier>EISSN: 1464-410X</identifier><identifier>DOI: 10.1111/bju.14892</identifier><identifier>PMID: 31392808</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Artificial intelligence ; Biopsy ; Cancer surgery ; Learning algorithms ; logistic regression ; Lymph nodes ; Lymphatic system ; Machine learning ; Magnetic resonance imaging ; NMR ; Nomograms ; Nuclear magnetic resonance ; Patients ; PCSM ; pelvic lymph node invasion ; Prostate cancer ; ProstateCancer ; Prostatectomy ; random forests ; support vector machine ; Surgery ; Urological surgery</subject><ispartof>BJU international, 2019-12, Vol.124 (6), p.972-983</ispartof><rights>2019 The Authors BJU International © 2019 BJU International Published by John Wiley &amp; Sons Ltd</rights><rights>2019 The Authors BJU International © 2019 BJU International Published by John Wiley &amp; Sons Ltd.</rights><rights>BJUI © 2019 BJU International</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3532-57a26dcec6460f5b222dc92a46845d313fb955a9661db6b0e4f5da83ff2645293</citedby><cites>FETCH-LOGICAL-c3532-57a26dcec6460f5b222dc92a46845d313fb955a9661db6b0e4f5da83ff2645293</cites><orcidid>0000-0002-2811-7513</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fbju.14892$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fbju.14892$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31392808$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hou, Ying</creatorcontrib><creatorcontrib>Bao, Mei‐Ling</creatorcontrib><creatorcontrib>Wu, Chen‐Jiang</creatorcontrib><creatorcontrib>Zhang, Jing</creatorcontrib><creatorcontrib>Zhang, Yu‐Dong</creatorcontrib><creatorcontrib>Shi, Hai‐Bin</creatorcontrib><title>A machine learning‐assisted decision‐support model to better identify patients with prostate cancer requiring an extended pelvic lymph node dissection</title><title>BJU international</title><addtitle>BJU Int</addtitle><description>Objectives To develop a machine learning (ML)‐assisted model to identify candidates for extended pelvic lymph node dissection (ePLND) in prostate cancer by integrating clinical, biopsy, and precisely defined magnetic resonance imaging (MRI) findings. Patients and Methods In all, 248 patients treated with radical prostatectomy and ePLND or PLND were included. ML‐assisted models were developed from 18 integrated features using logistic regression (LR), support vector machine (SVM), and random forests (RFs). The models were compared to the Memorial SloanKettering Cancer Center (MSKCC) nomogram using receiver operating characteristic‐derived area under the curve (AUC) calibration plots and decision curve analysis (DCA). Results A total of 59/248 (23.8%) lymph node invasions (LNIs) were identified at surgery. The predictive accuracy of the ML‐based models, with (+) or without (−) MRI‐reported LNI, yielded similar AUCs (RFs+/RFs−: 0.906/0.885; SVM+/SVM−: 0.891/0.868; LR+/LR−: 0.886/0.882) and were higher than the MSKCC nomogram (0.816; P &lt; 0.001). The calibration of the MSKCC nomogram tended to underestimate LNI risk across the entire range of predicted probabilities compared to the ML‐assisted models. The DCA showed that the ML‐assisted models significantly improved risk prediction at a risk threshold of ≤80% compared to the MSKCC nomogram. If ePLNDs missed was controlled at &lt;3%, both RFs+ and RFs− resulted in a higher positive predictive value (51.4%/49.6% vs 40.3%), similar negative predictive value (97.2%/97.8% vs 97.2%), and higher number of ePLNDs spared (56.9%/54.4% vs 43.9%) compared to the MSKCC nomogram. Conclusions Our ML‐based model, with a 5–15% cutoff, is superior to the MSKCC nomogram, sparing ≥50% of ePLNDs with a risk of missing &lt;3% of LNIs.</description><subject>Artificial intelligence</subject><subject>Biopsy</subject><subject>Cancer surgery</subject><subject>Learning algorithms</subject><subject>logistic regression</subject><subject>Lymph nodes</subject><subject>Lymphatic system</subject><subject>Machine learning</subject><subject>Magnetic resonance imaging</subject><subject>NMR</subject><subject>Nomograms</subject><subject>Nuclear magnetic resonance</subject><subject>Patients</subject><subject>PCSM</subject><subject>pelvic lymph node invasion</subject><subject>Prostate cancer</subject><subject>ProstateCancer</subject><subject>Prostatectomy</subject><subject>random forests</subject><subject>support vector machine</subject><subject>Surgery</subject><subject>Urological surgery</subject><issn>1464-4096</issn><issn>1464-410X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kcFOFTEUhhuiAQQWvoBp4gYXF9pO2zuzRKKoIXEDCbum057x9mamM7Qd4e58BNc-nk_CwQsuTOymJydfvp7Tn5DXnJ1wPKftej7hsm7EDtnnUsuF5OzmxXPNGr1HXuW8ZgwbWu2SvYpXjahZvU9-ndHBulWIQHuwKYb47fePnzbnkAt46sGFHMaIvTxP05gKHUYPPS0jbaEUSDR4iCV0GzrZErDM9C6UFZ3SmIstQJ2NDrEEt3NIqKc2UrgvED36J-i_B0f7zTCtaEQz9SFncAXfPCQvO9tnOHq6D8j1xw9X558Wl18vPp-fXS5cpSqxUEsrtHfgtNSsU60QwrtGWKlrqTxu2rWNUrbRmvtWtwxkp7ytq64TWirRVAfkeOvFkW9nyMUMITvoexthnLMRYskY00IqRN_-g67HOUWczoiKL5eqYeKRerelHP5BTtCZKYXBpo3hzDwGZjAw8ycwZN88Ged2AP-XfE4IgdMtcBd62PzfZN5_ud4qHwAaY6SN</recordid><startdate>201912</startdate><enddate>201912</enddate><creator>Hou, Ying</creator><creator>Bao, Mei‐Ling</creator><creator>Wu, Chen‐Jiang</creator><creator>Zhang, Jing</creator><creator>Zhang, Yu‐Dong</creator><creator>Shi, Hai‐Bin</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2811-7513</orcidid></search><sort><creationdate>201912</creationdate><title>A machine learning‐assisted decision‐support model to better identify patients with prostate cancer requiring an extended pelvic lymph node dissection</title><author>Hou, Ying ; Bao, Mei‐Ling ; Wu, Chen‐Jiang ; Zhang, Jing ; Zhang, Yu‐Dong ; Shi, Hai‐Bin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3532-57a26dcec6460f5b222dc92a46845d313fb955a9661db6b0e4f5da83ff2645293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial intelligence</topic><topic>Biopsy</topic><topic>Cancer surgery</topic><topic>Learning algorithms</topic><topic>logistic regression</topic><topic>Lymph nodes</topic><topic>Lymphatic system</topic><topic>Machine learning</topic><topic>Magnetic resonance imaging</topic><topic>NMR</topic><topic>Nomograms</topic><topic>Nuclear magnetic resonance</topic><topic>Patients</topic><topic>PCSM</topic><topic>pelvic lymph node invasion</topic><topic>Prostate cancer</topic><topic>ProstateCancer</topic><topic>Prostatectomy</topic><topic>random forests</topic><topic>support vector machine</topic><topic>Surgery</topic><topic>Urological surgery</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hou, Ying</creatorcontrib><creatorcontrib>Bao, Mei‐Ling</creatorcontrib><creatorcontrib>Wu, Chen‐Jiang</creatorcontrib><creatorcontrib>Zhang, Jing</creatorcontrib><creatorcontrib>Zhang, Yu‐Dong</creatorcontrib><creatorcontrib>Shi, Hai‐Bin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>BJU international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hou, Ying</au><au>Bao, Mei‐Ling</au><au>Wu, Chen‐Jiang</au><au>Zhang, Jing</au><au>Zhang, Yu‐Dong</au><au>Shi, Hai‐Bin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A machine learning‐assisted decision‐support model to better identify patients with prostate cancer requiring an extended pelvic lymph node dissection</atitle><jtitle>BJU international</jtitle><addtitle>BJU Int</addtitle><date>2019-12</date><risdate>2019</risdate><volume>124</volume><issue>6</issue><spage>972</spage><epage>983</epage><pages>972-983</pages><issn>1464-4096</issn><eissn>1464-410X</eissn><abstract>Objectives To develop a machine learning (ML)‐assisted model to identify candidates for extended pelvic lymph node dissection (ePLND) in prostate cancer by integrating clinical, biopsy, and precisely defined magnetic resonance imaging (MRI) findings. Patients and Methods In all, 248 patients treated with radical prostatectomy and ePLND or PLND were included. ML‐assisted models were developed from 18 integrated features using logistic regression (LR), support vector machine (SVM), and random forests (RFs). The models were compared to the Memorial SloanKettering Cancer Center (MSKCC) nomogram using receiver operating characteristic‐derived area under the curve (AUC) calibration plots and decision curve analysis (DCA). Results A total of 59/248 (23.8%) lymph node invasions (LNIs) were identified at surgery. The predictive accuracy of the ML‐based models, with (+) or without (−) MRI‐reported LNI, yielded similar AUCs (RFs+/RFs−: 0.906/0.885; SVM+/SVM−: 0.891/0.868; LR+/LR−: 0.886/0.882) and were higher than the MSKCC nomogram (0.816; P &lt; 0.001). The calibration of the MSKCC nomogram tended to underestimate LNI risk across the entire range of predicted probabilities compared to the ML‐assisted models. The DCA showed that the ML‐assisted models significantly improved risk prediction at a risk threshold of ≤80% compared to the MSKCC nomogram. If ePLNDs missed was controlled at &lt;3%, both RFs+ and RFs− resulted in a higher positive predictive value (51.4%/49.6% vs 40.3%), similar negative predictive value (97.2%/97.8% vs 97.2%), and higher number of ePLNDs spared (56.9%/54.4% vs 43.9%) compared to the MSKCC nomogram. Conclusions Our ML‐based model, with a 5–15% cutoff, is superior to the MSKCC nomogram, sparing ≥50% of ePLNDs with a risk of missing &lt;3% of LNIs.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31392808</pmid><doi>10.1111/bju.14892</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2811-7513</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1464-4096
ispartof BJU international, 2019-12, Vol.124 (6), p.972-983
issn 1464-4096
1464-410X
language eng
recordid cdi_proquest_miscellaneous_2270006245
source Wiley Journals
subjects Artificial intelligence
Biopsy
Cancer surgery
Learning algorithms
logistic regression
Lymph nodes
Lymphatic system
Machine learning
Magnetic resonance imaging
NMR
Nomograms
Nuclear magnetic resonance
Patients
PCSM
pelvic lymph node invasion
Prostate cancer
ProstateCancer
Prostatectomy
random forests
support vector machine
Surgery
Urological surgery
title A machine learning‐assisted decision‐support model to better identify patients with prostate cancer requiring an extended pelvic lymph node dissection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T23%3A37%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20machine%20learning%E2%80%90assisted%20decision%E2%80%90support%20model%20to%20better%20identify%20patients%20with%20prostate%20cancer%20requiring%20an%20extended%20pelvic%20lymph%20node%20dissection&rft.jtitle=BJU%20international&rft.au=Hou,%20Ying&rft.date=2019-12&rft.volume=124&rft.issue=6&rft.spage=972&rft.epage=983&rft.pages=972-983&rft.issn=1464-4096&rft.eissn=1464-410X&rft_id=info:doi/10.1111/bju.14892&rft_dat=%3Cproquest_cross%3E2317759025%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2317759025&rft_id=info:pmid/31392808&rfr_iscdi=true