Functional analysis of coiled-coil domains of MCU in mitochondrial calcium uptake

The mitochondrial calcium uniporter (MCU) complex is a highly-selective calcium channel. This complex consists of MCU, mitochondrial calcium uptake proteins (MICUs), MCU regulator 1 (MCUR1), essential MCU regulator element (EMRE), etc. MCU, which is the pore-forming subunit, has 2 highly conserved c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochimica et biophysica acta. Bioenergetics 2019-12, Vol.1860 (12), p.148061-148061, Article 148061
Hauptverfasser: Yamamoto, Takenori, Ozono, Mizune, Watanabe, Akira, Maeda, Kosuke, Nara, Atsushi, Hashida, Mei, Ido, Yusuke, Hiroshima, Yuka, Yamada, Akiko, Terada, Hiroshi, Shinohara, Yasuo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 148061
container_issue 12
container_start_page 148061
container_title Biochimica et biophysica acta. Bioenergetics
container_volume 1860
creator Yamamoto, Takenori
Ozono, Mizune
Watanabe, Akira
Maeda, Kosuke
Nara, Atsushi
Hashida, Mei
Ido, Yusuke
Hiroshima, Yuka
Yamada, Akiko
Terada, Hiroshi
Shinohara, Yasuo
description The mitochondrial calcium uniporter (MCU) complex is a highly-selective calcium channel. This complex consists of MCU, mitochondrial calcium uptake proteins (MICUs), MCU regulator 1 (MCUR1), essential MCU regulator element (EMRE), etc. MCU, which is the pore-forming subunit, has 2 highly conserved coiled-coil domains (CC1 and CC2); however, their functional roles are unknown. The yeast expression system of mammalian MCU and EMRE enables precise reconstitution of the properties of the mammalian MCU complex in yeast mitochondria. Using the yeast expression system, we here showed that, when MCU mutant lacking CC1 or CC2 was expressed together with EMRE in yeast, their mitochondrial Ca2+-uptake function was lost. Additionally, point mutations in CC1 or CC2, which were expected to prevent the formation of the coiled coil, also disrupted the Ca2+-uptake function. Thus, it is essential for the Ca2+ uptake function of MCU that the coiled-coil structure be formed in CC1 and CC2. The loss of function of those mutated MCUs was also observed in the mitochondria of a yeast strain lacking the yeast MCUR1 homolog. Also, in the D. discoideum MCU, which has EMRE-independent Ca2+-uptake function, the deletion of either CC1 or CC2 caused the loss of function. These results indicated that the critical functions of CC1 and CC2 were independent of other regulatory subunits such as MCUR1 and EMRE, suggesting that CC1 and CC2 might be essential for pore formation by MCUs themselves. Based on the tetrameric structure of MCU, we discussed the functional roles of the coiled-coil domains of MCU. [Display omitted] •CC1 and CC2 of MCU are critical for mitochondrial Ca2+ uptake.•The formation of coiled-coil structure in CC1 and CC2 of MCU is essential.•The critical functions of CC1 and CC2 are independent of other regulatory subunits.•The biochemical findings we here acquired corresponded to the MCU tetramer model.
doi_str_mv 10.1016/j.bbabio.2019.148061
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2270004503</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0005272819301008</els_id><sourcerecordid>2270004503</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-4b043b22701b7c7a4aeed3e34c3a572bfa376113241d9b3fc3cd9f9f676a701f3</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRbK3-A5EcvaTuV7LNRZBiVaiIYM_LfuLWJFt3E6H_3o2pHr3MwPA-M8wDwCWCcwRRebOdSymk83MMUTVHdAFLdASmaMGqHJcFPAZTCGGRY4YXE3AW4xYmjGJyCiYEkYrCqpyC11Xfqs75VtSZSGUfXcy8zZR3tdH50DLtG-Han_HzcpO5Nmtc59W7b3VwiVOiVq5vsn7XiQ9zDk6sqKO5OPQZ2Kzu35aP-frl4Wl5t84VZbTLqYSUSIwZRJIpJqgwRhNDqCKiYFhaQViJEMEU6UoSq4jSla1syUqRGEtm4Hrcuwv-szex442LytS1aI3vIx9WQ0gLSFKUjlEVfIzBWL4LrhFhzxHkg0y-5aNMPsjko8yEXR0u9LIx-g_6tZcCt2PApD-_nAk8KmdaZbQLRnVce_f_hW9V5IbN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2270004503</pqid></control><display><type>article</type><title>Functional analysis of coiled-coil domains of MCU in mitochondrial calcium uptake</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><source>EZB Electronic Journals Library</source><creator>Yamamoto, Takenori ; Ozono, Mizune ; Watanabe, Akira ; Maeda, Kosuke ; Nara, Atsushi ; Hashida, Mei ; Ido, Yusuke ; Hiroshima, Yuka ; Yamada, Akiko ; Terada, Hiroshi ; Shinohara, Yasuo</creator><creatorcontrib>Yamamoto, Takenori ; Ozono, Mizune ; Watanabe, Akira ; Maeda, Kosuke ; Nara, Atsushi ; Hashida, Mei ; Ido, Yusuke ; Hiroshima, Yuka ; Yamada, Akiko ; Terada, Hiroshi ; Shinohara, Yasuo</creatorcontrib><description>The mitochondrial calcium uniporter (MCU) complex is a highly-selective calcium channel. This complex consists of MCU, mitochondrial calcium uptake proteins (MICUs), MCU regulator 1 (MCUR1), essential MCU regulator element (EMRE), etc. MCU, which is the pore-forming subunit, has 2 highly conserved coiled-coil domains (CC1 and CC2); however, their functional roles are unknown. The yeast expression system of mammalian MCU and EMRE enables precise reconstitution of the properties of the mammalian MCU complex in yeast mitochondria. Using the yeast expression system, we here showed that, when MCU mutant lacking CC1 or CC2 was expressed together with EMRE in yeast, their mitochondrial Ca2+-uptake function was lost. Additionally, point mutations in CC1 or CC2, which were expected to prevent the formation of the coiled coil, also disrupted the Ca2+-uptake function. Thus, it is essential for the Ca2+ uptake function of MCU that the coiled-coil structure be formed in CC1 and CC2. The loss of function of those mutated MCUs was also observed in the mitochondria of a yeast strain lacking the yeast MCUR1 homolog. Also, in the D. discoideum MCU, which has EMRE-independent Ca2+-uptake function, the deletion of either CC1 or CC2 caused the loss of function. These results indicated that the critical functions of CC1 and CC2 were independent of other regulatory subunits such as MCUR1 and EMRE, suggesting that CC1 and CC2 might be essential for pore formation by MCUs themselves. Based on the tetrameric structure of MCU, we discussed the functional roles of the coiled-coil domains of MCU. [Display omitted] •CC1 and CC2 of MCU are critical for mitochondrial Ca2+ uptake.•The formation of coiled-coil structure in CC1 and CC2 of MCU is essential.•The critical functions of CC1 and CC2 are independent of other regulatory subunits.•The biochemical findings we here acquired corresponded to the MCU tetramer model.</description><identifier>ISSN: 0005-2728</identifier><identifier>EISSN: 1879-2650</identifier><identifier>DOI: 10.1016/j.bbabio.2019.148061</identifier><identifier>PMID: 31394096</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Animals ; Calcium - metabolism ; Calcium Channels - metabolism ; Calcium uniporter ; Cations, Divalent - metabolism ; Coiled coil ; Dictyostelium ; Fungal Proteins - metabolism ; Ion channel ; MCU ; Mice ; Mitochondria ; Mitochondria - metabolism ; Models, Molecular ; Protein Domains ; Protein Structure, Quaternary ; Protozoan Proteins - metabolism ; Saccharomyces cerevisiae ; Yeast</subject><ispartof>Biochimica et biophysica acta. Bioenergetics, 2019-12, Vol.1860 (12), p.148061-148061, Article 148061</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright © 2019 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-4b043b22701b7c7a4aeed3e34c3a572bfa376113241d9b3fc3cd9f9f676a701f3</citedby><cites>FETCH-LOGICAL-c474t-4b043b22701b7c7a4aeed3e34c3a572bfa376113241d9b3fc3cd9f9f676a701f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.bbabio.2019.148061$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27926,27927,45997</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31394096$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yamamoto, Takenori</creatorcontrib><creatorcontrib>Ozono, Mizune</creatorcontrib><creatorcontrib>Watanabe, Akira</creatorcontrib><creatorcontrib>Maeda, Kosuke</creatorcontrib><creatorcontrib>Nara, Atsushi</creatorcontrib><creatorcontrib>Hashida, Mei</creatorcontrib><creatorcontrib>Ido, Yusuke</creatorcontrib><creatorcontrib>Hiroshima, Yuka</creatorcontrib><creatorcontrib>Yamada, Akiko</creatorcontrib><creatorcontrib>Terada, Hiroshi</creatorcontrib><creatorcontrib>Shinohara, Yasuo</creatorcontrib><title>Functional analysis of coiled-coil domains of MCU in mitochondrial calcium uptake</title><title>Biochimica et biophysica acta. Bioenergetics</title><addtitle>Biochim Biophys Acta Bioenerg</addtitle><description>The mitochondrial calcium uniporter (MCU) complex is a highly-selective calcium channel. This complex consists of MCU, mitochondrial calcium uptake proteins (MICUs), MCU regulator 1 (MCUR1), essential MCU regulator element (EMRE), etc. MCU, which is the pore-forming subunit, has 2 highly conserved coiled-coil domains (CC1 and CC2); however, their functional roles are unknown. The yeast expression system of mammalian MCU and EMRE enables precise reconstitution of the properties of the mammalian MCU complex in yeast mitochondria. Using the yeast expression system, we here showed that, when MCU mutant lacking CC1 or CC2 was expressed together with EMRE in yeast, their mitochondrial Ca2+-uptake function was lost. Additionally, point mutations in CC1 or CC2, which were expected to prevent the formation of the coiled coil, also disrupted the Ca2+-uptake function. Thus, it is essential for the Ca2+ uptake function of MCU that the coiled-coil structure be formed in CC1 and CC2. The loss of function of those mutated MCUs was also observed in the mitochondria of a yeast strain lacking the yeast MCUR1 homolog. Also, in the D. discoideum MCU, which has EMRE-independent Ca2+-uptake function, the deletion of either CC1 or CC2 caused the loss of function. These results indicated that the critical functions of CC1 and CC2 were independent of other regulatory subunits such as MCUR1 and EMRE, suggesting that CC1 and CC2 might be essential for pore formation by MCUs themselves. Based on the tetrameric structure of MCU, we discussed the functional roles of the coiled-coil domains of MCU. [Display omitted] •CC1 and CC2 of MCU are critical for mitochondrial Ca2+ uptake.•The formation of coiled-coil structure in CC1 and CC2 of MCU is essential.•The critical functions of CC1 and CC2 are independent of other regulatory subunits.•The biochemical findings we here acquired corresponded to the MCU tetramer model.</description><subject>Animals</subject><subject>Calcium - metabolism</subject><subject>Calcium Channels - metabolism</subject><subject>Calcium uniporter</subject><subject>Cations, Divalent - metabolism</subject><subject>Coiled coil</subject><subject>Dictyostelium</subject><subject>Fungal Proteins - metabolism</subject><subject>Ion channel</subject><subject>MCU</subject><subject>Mice</subject><subject>Mitochondria</subject><subject>Mitochondria - metabolism</subject><subject>Models, Molecular</subject><subject>Protein Domains</subject><subject>Protein Structure, Quaternary</subject><subject>Protozoan Proteins - metabolism</subject><subject>Saccharomyces cerevisiae</subject><subject>Yeast</subject><issn>0005-2728</issn><issn>1879-2650</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1Lw0AQhhdRbK3-A5EcvaTuV7LNRZBiVaiIYM_LfuLWJFt3E6H_3o2pHr3MwPA-M8wDwCWCcwRRebOdSymk83MMUTVHdAFLdASmaMGqHJcFPAZTCGGRY4YXE3AW4xYmjGJyCiYEkYrCqpyC11Xfqs75VtSZSGUfXcy8zZR3tdH50DLtG-Han_HzcpO5Nmtc59W7b3VwiVOiVq5vsn7XiQ9zDk6sqKO5OPQZ2Kzu35aP-frl4Wl5t84VZbTLqYSUSIwZRJIpJqgwRhNDqCKiYFhaQViJEMEU6UoSq4jSla1syUqRGEtm4Hrcuwv-szex442LytS1aI3vIx9WQ0gLSFKUjlEVfIzBWL4LrhFhzxHkg0y-5aNMPsjko8yEXR0u9LIx-g_6tZcCt2PApD-_nAk8KmdaZbQLRnVce_f_hW9V5IbN</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Yamamoto, Takenori</creator><creator>Ozono, Mizune</creator><creator>Watanabe, Akira</creator><creator>Maeda, Kosuke</creator><creator>Nara, Atsushi</creator><creator>Hashida, Mei</creator><creator>Ido, Yusuke</creator><creator>Hiroshima, Yuka</creator><creator>Yamada, Akiko</creator><creator>Terada, Hiroshi</creator><creator>Shinohara, Yasuo</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20191201</creationdate><title>Functional analysis of coiled-coil domains of MCU in mitochondrial calcium uptake</title><author>Yamamoto, Takenori ; Ozono, Mizune ; Watanabe, Akira ; Maeda, Kosuke ; Nara, Atsushi ; Hashida, Mei ; Ido, Yusuke ; Hiroshima, Yuka ; Yamada, Akiko ; Terada, Hiroshi ; Shinohara, Yasuo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-4b043b22701b7c7a4aeed3e34c3a572bfa376113241d9b3fc3cd9f9f676a701f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Calcium - metabolism</topic><topic>Calcium Channels - metabolism</topic><topic>Calcium uniporter</topic><topic>Cations, Divalent - metabolism</topic><topic>Coiled coil</topic><topic>Dictyostelium</topic><topic>Fungal Proteins - metabolism</topic><topic>Ion channel</topic><topic>MCU</topic><topic>Mice</topic><topic>Mitochondria</topic><topic>Mitochondria - metabolism</topic><topic>Models, Molecular</topic><topic>Protein Domains</topic><topic>Protein Structure, Quaternary</topic><topic>Protozoan Proteins - metabolism</topic><topic>Saccharomyces cerevisiae</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yamamoto, Takenori</creatorcontrib><creatorcontrib>Ozono, Mizune</creatorcontrib><creatorcontrib>Watanabe, Akira</creatorcontrib><creatorcontrib>Maeda, Kosuke</creatorcontrib><creatorcontrib>Nara, Atsushi</creatorcontrib><creatorcontrib>Hashida, Mei</creatorcontrib><creatorcontrib>Ido, Yusuke</creatorcontrib><creatorcontrib>Hiroshima, Yuka</creatorcontrib><creatorcontrib>Yamada, Akiko</creatorcontrib><creatorcontrib>Terada, Hiroshi</creatorcontrib><creatorcontrib>Shinohara, Yasuo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biochimica et biophysica acta. Bioenergetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yamamoto, Takenori</au><au>Ozono, Mizune</au><au>Watanabe, Akira</au><au>Maeda, Kosuke</au><au>Nara, Atsushi</au><au>Hashida, Mei</au><au>Ido, Yusuke</au><au>Hiroshima, Yuka</au><au>Yamada, Akiko</au><au>Terada, Hiroshi</au><au>Shinohara, Yasuo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functional analysis of coiled-coil domains of MCU in mitochondrial calcium uptake</atitle><jtitle>Biochimica et biophysica acta. Bioenergetics</jtitle><addtitle>Biochim Biophys Acta Bioenerg</addtitle><date>2019-12-01</date><risdate>2019</risdate><volume>1860</volume><issue>12</issue><spage>148061</spage><epage>148061</epage><pages>148061-148061</pages><artnum>148061</artnum><issn>0005-2728</issn><eissn>1879-2650</eissn><abstract>The mitochondrial calcium uniporter (MCU) complex is a highly-selective calcium channel. This complex consists of MCU, mitochondrial calcium uptake proteins (MICUs), MCU regulator 1 (MCUR1), essential MCU regulator element (EMRE), etc. MCU, which is the pore-forming subunit, has 2 highly conserved coiled-coil domains (CC1 and CC2); however, their functional roles are unknown. The yeast expression system of mammalian MCU and EMRE enables precise reconstitution of the properties of the mammalian MCU complex in yeast mitochondria. Using the yeast expression system, we here showed that, when MCU mutant lacking CC1 or CC2 was expressed together with EMRE in yeast, their mitochondrial Ca2+-uptake function was lost. Additionally, point mutations in CC1 or CC2, which were expected to prevent the formation of the coiled coil, also disrupted the Ca2+-uptake function. Thus, it is essential for the Ca2+ uptake function of MCU that the coiled-coil structure be formed in CC1 and CC2. The loss of function of those mutated MCUs was also observed in the mitochondria of a yeast strain lacking the yeast MCUR1 homolog. Also, in the D. discoideum MCU, which has EMRE-independent Ca2+-uptake function, the deletion of either CC1 or CC2 caused the loss of function. These results indicated that the critical functions of CC1 and CC2 were independent of other regulatory subunits such as MCUR1 and EMRE, suggesting that CC1 and CC2 might be essential for pore formation by MCUs themselves. Based on the tetrameric structure of MCU, we discussed the functional roles of the coiled-coil domains of MCU. [Display omitted] •CC1 and CC2 of MCU are critical for mitochondrial Ca2+ uptake.•The formation of coiled-coil structure in CC1 and CC2 of MCU is essential.•The critical functions of CC1 and CC2 are independent of other regulatory subunits.•The biochemical findings we here acquired corresponded to the MCU tetramer model.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>31394096</pmid><doi>10.1016/j.bbabio.2019.148061</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0005-2728
ispartof Biochimica et biophysica acta. Bioenergetics, 2019-12, Vol.1860 (12), p.148061-148061, Article 148061
issn 0005-2728
1879-2650
language eng
recordid cdi_proquest_miscellaneous_2270004503
source MEDLINE; Access via ScienceDirect (Elsevier); EZB Electronic Journals Library
subjects Animals
Calcium - metabolism
Calcium Channels - metabolism
Calcium uniporter
Cations, Divalent - metabolism
Coiled coil
Dictyostelium
Fungal Proteins - metabolism
Ion channel
MCU
Mice
Mitochondria
Mitochondria - metabolism
Models, Molecular
Protein Domains
Protein Structure, Quaternary
Protozoan Proteins - metabolism
Saccharomyces cerevisiae
Yeast
title Functional analysis of coiled-coil domains of MCU in mitochondrial calcium uptake
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T20%3A52%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functional%20analysis%20of%20coiled-coil%20domains%20of%20MCU%20in%20mitochondrial%20calcium%20uptake&rft.jtitle=Biochimica%20et%20biophysica%20acta.%20Bioenergetics&rft.au=Yamamoto,%20Takenori&rft.date=2019-12-01&rft.volume=1860&rft.issue=12&rft.spage=148061&rft.epage=148061&rft.pages=148061-148061&rft.artnum=148061&rft.issn=0005-2728&rft.eissn=1879-2650&rft_id=info:doi/10.1016/j.bbabio.2019.148061&rft_dat=%3Cproquest_cross%3E2270004503%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2270004503&rft_id=info:pmid/31394096&rft_els_id=S0005272819301008&rfr_iscdi=true