3D bioprinted endometrial stem cells on melt electrospun poly ε-caprolactone mesh for pelvic floor application promote anti-inflammatory responses in mice

[Display omitted] Endometrial mesenchymal stem/stromal cells (eMSCs) exhibit excellent regenerative capacity in the endometrial lining of the uterus following menstruation and high proliferative capacity in vitro. Bioprinting eMSCs onto a mesh could be a potential therapy for Pelvic Organ Prolapse (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta biomaterialia 2019-10, Vol.97, p.162-176
Hauptverfasser: Paul, Kallyanashis, Darzi, Saeedeh, McPhee, Gordon, Del Borgo, Mark P., Werkmeister, Jerome A., Gargett, Caroline E., Mukherjee, Shayanti
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 176
container_issue
container_start_page 162
container_title Acta biomaterialia
container_volume 97
creator Paul, Kallyanashis
Darzi, Saeedeh
McPhee, Gordon
Del Borgo, Mark P.
Werkmeister, Jerome A.
Gargett, Caroline E.
Mukherjee, Shayanti
description [Display omitted] Endometrial mesenchymal stem/stromal cells (eMSCs) exhibit excellent regenerative capacity in the endometrial lining of the uterus following menstruation and high proliferative capacity in vitro. Bioprinting eMSCs onto a mesh could be a potential therapy for Pelvic Organ Prolapse (POP). This study reports an alternative treatment strategy targeting vaginal wall repair using bioprinting of eMSCs encapsulated in a hydrogel and 3D melt electrospun mesh to generate a tissue engineering construct. Following a CAD, 3D printed poly ε-caprolactone (PCL) meshes were fabricated using melt electrospinning (MES) at different temperatures using a GMP clinical grade GESIM Bioscaffolder. Electron and atomic force microscopies revealed that MES meshes fabricated at 100 °C and with a speed 20 mm/s had the largest open pore diameter (47.2 ± 11.4 μm) and the lowest strand thickness (121.4 ± 46 μm) that promoted optimal eMSC attachment. An Aloe Vera-Sodium Alginate (AV-ALG) composite based hydrogel was optimised to a 1:1 mixture (1%AV-1%ALG) and eMSCs, purified from human endometrial biopsies, were then bioprinted in this hydrogel onto the MES printed meshes. Acute in vivo foreign body response assessment in NSG mice revealed that eMSC printed on MES constructs promoted tissue integration, eMSC retention and an anti-inflammatory M2 macrophage phenotype characterised by F4/80+CD206+ colocalization. Our results address an unmet medical need highlighting the potential of 3D bioprinted eMSC-MES meshes as an alternative approach to overcome the current challenges with non-degradable knitted meshes in POP treatment. This study presents the first report of bioprinting mesenchymal stem cells derived from woman endometrium (eMSCs) to boost Pelvic Organ Prolapse (POP) treatment. It impacts over 50% of elderly women with no optimal treatment at present. The overall study is conducted in three stages as fabricating a melt electrospun (MES) mesh, bioprinting eMSCs into a Ca2+ free Aloe Vera-Alginate (AV-Alg) based hydrogel and in vivo study. Our data showed that AV-ALG hydrogel potentially suppresses the foreign body response and further addition of eMSCs triggered a high influx of anti-inflammatory CD206+ M2 macrophages. Our final construct demonstrates a favourable foreign body response to predict expected tissue integration, therefore, provides a potential for developing an alternative treatment for POP.
doi_str_mv 10.1016/j.actbio.2019.08.003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2269405395</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1742706119305501</els_id><sourcerecordid>2269405395</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-d5e3e85ed7942da4ad153270352a6d69e7e012b9dacc482acea3792c0f57cfc63</originalsourceid><addsrcrecordid>eNp9kc2KFDEUhYMozkzrG4gE3LipMj-VSmojyKijMOBG1yGd3MI0qaRMUgP9LPMcvobPZJoeXbhwlQS-e-7JOQi9oKSnhI5vDr2xde9TzwideqJ6QvgjdEmVVJ0Uo3rc7nJgnSQjvUBXpRwaoChTT9EFp1yNE6eX6J6_x01kzT5WcBiiSwvU7E3ApcKCLYRQcIp4gVAxBLA1p7JuEa8pHPGvn501a06heUkRGlW-4zllvEK48xbPIbWHWdfgram-6TR4SRWwidV3Ps7BLIupKR9xhrKmWKBg39Z5C8_Qk9mEAs8fzh369vHD1-tP3e2Xm8_X7247yydSOyeAgxLg5DQwZwbjqOBMEi6YGd04gQRC2X5yxtpBMWPBcDkxS2Yh7WxHvkOvz7rN248NStWLL6ePmwhpK5qxcRqI4JNo6Kt_0EPacmzuNONUCDLKlu0ODWfKtqxKhlm3fBeTj5oSfSpPH_S5PH0qTxOlWzdt7OWD-LZfwP0d-tNWA96eAWhp3HnIulgP0YLzuRWjXfL_3_AbEt-xQg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2315506731</pqid></control><display><type>article</type><title>3D bioprinted endometrial stem cells on melt electrospun poly ε-caprolactone mesh for pelvic floor application promote anti-inflammatory responses in mice</title><source>Access via ScienceDirect (Elsevier)</source><creator>Paul, Kallyanashis ; Darzi, Saeedeh ; McPhee, Gordon ; Del Borgo, Mark P. ; Werkmeister, Jerome A. ; Gargett, Caroline E. ; Mukherjee, Shayanti</creator><creatorcontrib>Paul, Kallyanashis ; Darzi, Saeedeh ; McPhee, Gordon ; Del Borgo, Mark P. ; Werkmeister, Jerome A. ; Gargett, Caroline E. ; Mukherjee, Shayanti</creatorcontrib><description>[Display omitted] Endometrial mesenchymal stem/stromal cells (eMSCs) exhibit excellent regenerative capacity in the endometrial lining of the uterus following menstruation and high proliferative capacity in vitro. Bioprinting eMSCs onto a mesh could be a potential therapy for Pelvic Organ Prolapse (POP). This study reports an alternative treatment strategy targeting vaginal wall repair using bioprinting of eMSCs encapsulated in a hydrogel and 3D melt electrospun mesh to generate a tissue engineering construct. Following a CAD, 3D printed poly ε-caprolactone (PCL) meshes were fabricated using melt electrospinning (MES) at different temperatures using a GMP clinical grade GESIM Bioscaffolder. Electron and atomic force microscopies revealed that MES meshes fabricated at 100 °C and with a speed 20 mm/s had the largest open pore diameter (47.2 ± 11.4 μm) and the lowest strand thickness (121.4 ± 46 μm) that promoted optimal eMSC attachment. An Aloe Vera-Sodium Alginate (AV-ALG) composite based hydrogel was optimised to a 1:1 mixture (1%AV-1%ALG) and eMSCs, purified from human endometrial biopsies, were then bioprinted in this hydrogel onto the MES printed meshes. Acute in vivo foreign body response assessment in NSG mice revealed that eMSC printed on MES constructs promoted tissue integration, eMSC retention and an anti-inflammatory M2 macrophage phenotype characterised by F4/80+CD206+ colocalization. Our results address an unmet medical need highlighting the potential of 3D bioprinted eMSC-MES meshes as an alternative approach to overcome the current challenges with non-degradable knitted meshes in POP treatment. This study presents the first report of bioprinting mesenchymal stem cells derived from woman endometrium (eMSCs) to boost Pelvic Organ Prolapse (POP) treatment. It impacts over 50% of elderly women with no optimal treatment at present. The overall study is conducted in three stages as fabricating a melt electrospun (MES) mesh, bioprinting eMSCs into a Ca2+ free Aloe Vera-Alginate (AV-Alg) based hydrogel and in vivo study. Our data showed that AV-ALG hydrogel potentially suppresses the foreign body response and further addition of eMSCs triggered a high influx of anti-inflammatory CD206+ M2 macrophages. Our final construct demonstrates a favourable foreign body response to predict expected tissue integration, therefore, provides a potential for developing an alternative treatment for POP.</description><identifier>ISSN: 1742-7061</identifier><identifier>EISSN: 1878-7568</identifier><identifier>DOI: 10.1016/j.actbio.2019.08.003</identifier><identifier>PMID: 31386931</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Alginic acid ; Atomic force microscopy ; Bioengineering ; Bioprinting ; Electrospinning ; Endometrial mesenchymal stem cells (eMSCs) ; Endometrium ; Hydrogels ; Inflammation ; Macrophage response ; Macrophages ; Melt electrospinning (MES) ; Menstruation ; Mesenchyme ; Mesh generation ; Pelvic mesh ; Pelvic organ prolapse ; Phenotypes ; Polycaprolactone ; Sodium alginate ; Stem cell transplantation ; Stem cells ; Stromal cells ; Three dimensional printing ; Tissue engineering ; Uterus ; Vagina</subject><ispartof>Acta biomaterialia, 2019-10, Vol.97, p.162-176</ispartof><rights>2019 Acta Materialia Inc.</rights><rights>Copyright © 2019 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.</rights><rights>Copyright Elsevier BV Oct 1, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-d5e3e85ed7942da4ad153270352a6d69e7e012b9dacc482acea3792c0f57cfc63</citedby><cites>FETCH-LOGICAL-c390t-d5e3e85ed7942da4ad153270352a6d69e7e012b9dacc482acea3792c0f57cfc63</cites><orcidid>0000-0002-3590-2077 ; 0000-0001-9995-002X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.actbio.2019.08.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31386931$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Paul, Kallyanashis</creatorcontrib><creatorcontrib>Darzi, Saeedeh</creatorcontrib><creatorcontrib>McPhee, Gordon</creatorcontrib><creatorcontrib>Del Borgo, Mark P.</creatorcontrib><creatorcontrib>Werkmeister, Jerome A.</creatorcontrib><creatorcontrib>Gargett, Caroline E.</creatorcontrib><creatorcontrib>Mukherjee, Shayanti</creatorcontrib><title>3D bioprinted endometrial stem cells on melt electrospun poly ε-caprolactone mesh for pelvic floor application promote anti-inflammatory responses in mice</title><title>Acta biomaterialia</title><addtitle>Acta Biomater</addtitle><description>[Display omitted] Endometrial mesenchymal stem/stromal cells (eMSCs) exhibit excellent regenerative capacity in the endometrial lining of the uterus following menstruation and high proliferative capacity in vitro. Bioprinting eMSCs onto a mesh could be a potential therapy for Pelvic Organ Prolapse (POP). This study reports an alternative treatment strategy targeting vaginal wall repair using bioprinting of eMSCs encapsulated in a hydrogel and 3D melt electrospun mesh to generate a tissue engineering construct. Following a CAD, 3D printed poly ε-caprolactone (PCL) meshes were fabricated using melt electrospinning (MES) at different temperatures using a GMP clinical grade GESIM Bioscaffolder. Electron and atomic force microscopies revealed that MES meshes fabricated at 100 °C and with a speed 20 mm/s had the largest open pore diameter (47.2 ± 11.4 μm) and the lowest strand thickness (121.4 ± 46 μm) that promoted optimal eMSC attachment. An Aloe Vera-Sodium Alginate (AV-ALG) composite based hydrogel was optimised to a 1:1 mixture (1%AV-1%ALG) and eMSCs, purified from human endometrial biopsies, were then bioprinted in this hydrogel onto the MES printed meshes. Acute in vivo foreign body response assessment in NSG mice revealed that eMSC printed on MES constructs promoted tissue integration, eMSC retention and an anti-inflammatory M2 macrophage phenotype characterised by F4/80+CD206+ colocalization. Our results address an unmet medical need highlighting the potential of 3D bioprinted eMSC-MES meshes as an alternative approach to overcome the current challenges with non-degradable knitted meshes in POP treatment. This study presents the first report of bioprinting mesenchymal stem cells derived from woman endometrium (eMSCs) to boost Pelvic Organ Prolapse (POP) treatment. It impacts over 50% of elderly women with no optimal treatment at present. The overall study is conducted in three stages as fabricating a melt electrospun (MES) mesh, bioprinting eMSCs into a Ca2+ free Aloe Vera-Alginate (AV-Alg) based hydrogel and in vivo study. Our data showed that AV-ALG hydrogel potentially suppresses the foreign body response and further addition of eMSCs triggered a high influx of anti-inflammatory CD206+ M2 macrophages. Our final construct demonstrates a favourable foreign body response to predict expected tissue integration, therefore, provides a potential for developing an alternative treatment for POP.</description><subject>Alginic acid</subject><subject>Atomic force microscopy</subject><subject>Bioengineering</subject><subject>Bioprinting</subject><subject>Electrospinning</subject><subject>Endometrial mesenchymal stem cells (eMSCs)</subject><subject>Endometrium</subject><subject>Hydrogels</subject><subject>Inflammation</subject><subject>Macrophage response</subject><subject>Macrophages</subject><subject>Melt electrospinning (MES)</subject><subject>Menstruation</subject><subject>Mesenchyme</subject><subject>Mesh generation</subject><subject>Pelvic mesh</subject><subject>Pelvic organ prolapse</subject><subject>Phenotypes</subject><subject>Polycaprolactone</subject><subject>Sodium alginate</subject><subject>Stem cell transplantation</subject><subject>Stem cells</subject><subject>Stromal cells</subject><subject>Three dimensional printing</subject><subject>Tissue engineering</subject><subject>Uterus</subject><subject>Vagina</subject><issn>1742-7061</issn><issn>1878-7568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kc2KFDEUhYMozkzrG4gE3LipMj-VSmojyKijMOBG1yGd3MI0qaRMUgP9LPMcvobPZJoeXbhwlQS-e-7JOQi9oKSnhI5vDr2xde9TzwideqJ6QvgjdEmVVJ0Uo3rc7nJgnSQjvUBXpRwaoChTT9EFp1yNE6eX6J6_x01kzT5WcBiiSwvU7E3ApcKCLYRQcIp4gVAxBLA1p7JuEa8pHPGvn501a06heUkRGlW-4zllvEK48xbPIbWHWdfgram-6TR4SRWwidV3Ps7BLIupKR9xhrKmWKBg39Z5C8_Qk9mEAs8fzh369vHD1-tP3e2Xm8_X7247yydSOyeAgxLg5DQwZwbjqOBMEi6YGd04gQRC2X5yxtpBMWPBcDkxS2Yh7WxHvkOvz7rN248NStWLL6ePmwhpK5qxcRqI4JNo6Kt_0EPacmzuNONUCDLKlu0ODWfKtqxKhlm3fBeTj5oSfSpPH_S5PH0qTxOlWzdt7OWD-LZfwP0d-tNWA96eAWhp3HnIulgP0YLzuRWjXfL_3_AbEt-xQg</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Paul, Kallyanashis</creator><creator>Darzi, Saeedeh</creator><creator>McPhee, Gordon</creator><creator>Del Borgo, Mark P.</creator><creator>Werkmeister, Jerome A.</creator><creator>Gargett, Caroline E.</creator><creator>Mukherjee, Shayanti</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3590-2077</orcidid><orcidid>https://orcid.org/0000-0001-9995-002X</orcidid></search><sort><creationdate>20191001</creationdate><title>3D bioprinted endometrial stem cells on melt electrospun poly ε-caprolactone mesh for pelvic floor application promote anti-inflammatory responses in mice</title><author>Paul, Kallyanashis ; Darzi, Saeedeh ; McPhee, Gordon ; Del Borgo, Mark P. ; Werkmeister, Jerome A. ; Gargett, Caroline E. ; Mukherjee, Shayanti</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-d5e3e85ed7942da4ad153270352a6d69e7e012b9dacc482acea3792c0f57cfc63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alginic acid</topic><topic>Atomic force microscopy</topic><topic>Bioengineering</topic><topic>Bioprinting</topic><topic>Electrospinning</topic><topic>Endometrial mesenchymal stem cells (eMSCs)</topic><topic>Endometrium</topic><topic>Hydrogels</topic><topic>Inflammation</topic><topic>Macrophage response</topic><topic>Macrophages</topic><topic>Melt electrospinning (MES)</topic><topic>Menstruation</topic><topic>Mesenchyme</topic><topic>Mesh generation</topic><topic>Pelvic mesh</topic><topic>Pelvic organ prolapse</topic><topic>Phenotypes</topic><topic>Polycaprolactone</topic><topic>Sodium alginate</topic><topic>Stem cell transplantation</topic><topic>Stem cells</topic><topic>Stromal cells</topic><topic>Three dimensional printing</topic><topic>Tissue engineering</topic><topic>Uterus</topic><topic>Vagina</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paul, Kallyanashis</creatorcontrib><creatorcontrib>Darzi, Saeedeh</creatorcontrib><creatorcontrib>McPhee, Gordon</creatorcontrib><creatorcontrib>Del Borgo, Mark P.</creatorcontrib><creatorcontrib>Werkmeister, Jerome A.</creatorcontrib><creatorcontrib>Gargett, Caroline E.</creatorcontrib><creatorcontrib>Mukherjee, Shayanti</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Acta biomaterialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paul, Kallyanashis</au><au>Darzi, Saeedeh</au><au>McPhee, Gordon</au><au>Del Borgo, Mark P.</au><au>Werkmeister, Jerome A.</au><au>Gargett, Caroline E.</au><au>Mukherjee, Shayanti</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D bioprinted endometrial stem cells on melt electrospun poly ε-caprolactone mesh for pelvic floor application promote anti-inflammatory responses in mice</atitle><jtitle>Acta biomaterialia</jtitle><addtitle>Acta Biomater</addtitle><date>2019-10-01</date><risdate>2019</risdate><volume>97</volume><spage>162</spage><epage>176</epage><pages>162-176</pages><issn>1742-7061</issn><eissn>1878-7568</eissn><abstract>[Display omitted] Endometrial mesenchymal stem/stromal cells (eMSCs) exhibit excellent regenerative capacity in the endometrial lining of the uterus following menstruation and high proliferative capacity in vitro. Bioprinting eMSCs onto a mesh could be a potential therapy for Pelvic Organ Prolapse (POP). This study reports an alternative treatment strategy targeting vaginal wall repair using bioprinting of eMSCs encapsulated in a hydrogel and 3D melt electrospun mesh to generate a tissue engineering construct. Following a CAD, 3D printed poly ε-caprolactone (PCL) meshes were fabricated using melt electrospinning (MES) at different temperatures using a GMP clinical grade GESIM Bioscaffolder. Electron and atomic force microscopies revealed that MES meshes fabricated at 100 °C and with a speed 20 mm/s had the largest open pore diameter (47.2 ± 11.4 μm) and the lowest strand thickness (121.4 ± 46 μm) that promoted optimal eMSC attachment. An Aloe Vera-Sodium Alginate (AV-ALG) composite based hydrogel was optimised to a 1:1 mixture (1%AV-1%ALG) and eMSCs, purified from human endometrial biopsies, were then bioprinted in this hydrogel onto the MES printed meshes. Acute in vivo foreign body response assessment in NSG mice revealed that eMSC printed on MES constructs promoted tissue integration, eMSC retention and an anti-inflammatory M2 macrophage phenotype characterised by F4/80+CD206+ colocalization. Our results address an unmet medical need highlighting the potential of 3D bioprinted eMSC-MES meshes as an alternative approach to overcome the current challenges with non-degradable knitted meshes in POP treatment. This study presents the first report of bioprinting mesenchymal stem cells derived from woman endometrium (eMSCs) to boost Pelvic Organ Prolapse (POP) treatment. It impacts over 50% of elderly women with no optimal treatment at present. The overall study is conducted in three stages as fabricating a melt electrospun (MES) mesh, bioprinting eMSCs into a Ca2+ free Aloe Vera-Alginate (AV-Alg) based hydrogel and in vivo study. Our data showed that AV-ALG hydrogel potentially suppresses the foreign body response and further addition of eMSCs triggered a high influx of anti-inflammatory CD206+ M2 macrophages. Our final construct demonstrates a favourable foreign body response to predict expected tissue integration, therefore, provides a potential for developing an alternative treatment for POP.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>31386931</pmid><doi>10.1016/j.actbio.2019.08.003</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-3590-2077</orcidid><orcidid>https://orcid.org/0000-0001-9995-002X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1742-7061
ispartof Acta biomaterialia, 2019-10, Vol.97, p.162-176
issn 1742-7061
1878-7568
language eng
recordid cdi_proquest_miscellaneous_2269405395
source Access via ScienceDirect (Elsevier)
subjects Alginic acid
Atomic force microscopy
Bioengineering
Bioprinting
Electrospinning
Endometrial mesenchymal stem cells (eMSCs)
Endometrium
Hydrogels
Inflammation
Macrophage response
Macrophages
Melt electrospinning (MES)
Menstruation
Mesenchyme
Mesh generation
Pelvic mesh
Pelvic organ prolapse
Phenotypes
Polycaprolactone
Sodium alginate
Stem cell transplantation
Stem cells
Stromal cells
Three dimensional printing
Tissue engineering
Uterus
Vagina
title 3D bioprinted endometrial stem cells on melt electrospun poly ε-caprolactone mesh for pelvic floor application promote anti-inflammatory responses in mice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T16%3A12%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20bioprinted%20endometrial%20stem%20cells%20on%20melt%20electrospun%20poly%20%CE%B5-caprolactone%20mesh%20for%20pelvic%20floor%20application%20promote%20anti-inflammatory%20responses%20in%20mice&rft.jtitle=Acta%20biomaterialia&rft.au=Paul,%20Kallyanashis&rft.date=2019-10-01&rft.volume=97&rft.spage=162&rft.epage=176&rft.pages=162-176&rft.issn=1742-7061&rft.eissn=1878-7568&rft_id=info:doi/10.1016/j.actbio.2019.08.003&rft_dat=%3Cproquest_cross%3E2269405395%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2315506731&rft_id=info:pmid/31386931&rft_els_id=S1742706119305501&rfr_iscdi=true