Competing Timescales Lead to Oscillations in Shear-Thickening Suspensions

Competing timescales generate novelty. Here, we show that a coupling between the timescales imposed by instrument inertia and the formation of interparticle frictional contacts in shear-thickening suspensions leads to highly asymmetric shear-rate oscillations. Experiments tuning the presence of osci...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2019-07, Vol.123 (3), p.038004-038004, Article 038004
Hauptverfasser: Richards, J A, Royer, J R, Liebchen, B, Guy, B M, Poon, W C K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 038004
container_issue 3
container_start_page 038004
container_title Physical review letters
container_volume 123
creator Richards, J A
Royer, J R
Liebchen, B
Guy, B M
Poon, W C K
description Competing timescales generate novelty. Here, we show that a coupling between the timescales imposed by instrument inertia and the formation of interparticle frictional contacts in shear-thickening suspensions leads to highly asymmetric shear-rate oscillations. Experiments tuning the presence of oscillations by varying the two timescales support our model. The observed oscillations give access to a shear-jamming portion of the flow curve that is forbidden in conventional rheometry. Moreover, the oscillation frequency allows us to quantify an intrinsic relaxation time for particle contacts. The coupling of fast contact network dynamics to a slower system variable should be generic to many other areas of dense suspension flow, with instrument inertia providing a paradigmatic example.
doi_str_mv 10.1103/PhysRevLett.123.038004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2269393923</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2266334552</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-e6f9354d5803090527c4fca4995a39c0d9d0f622133a3f23859892fed0c628c83</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRbK3-hRLw4iV1dicfu0cpfhQKFVvPYd1M7NZ8mU2E_nsTWkVkDnOY530ZHsamHGacA94-b_fuhb6W1LYzLnAGKAGCEzbmECs_5jw4ZWMA5L4CiEfswrkdAHARyXM2Qo4yCmI-Zot5VdTU2vLd29iCnNE5OW9JOvXayls5Y_Nct7YqnWdLb70l3fibrTUfVA6ZdedqKt1wv2Rnmc4dXR33hL0-3G_mT_5y9biY3y19gzJufYoyhWGQhhIQFIQiNkFmdKBUqFEZSFUKWSQER9SYCZShkkpklIKJhDQSJ-zm0Fs31WdHrk0K6wz1b5ZUdS4RIlLYj8Aevf6H7qquKfvvBipCDMJQ9FR0oExTOddQltSNLXSzTzgkg-zkj-ykl50cZPfB6bG-eyso_Y392MVvg1N8Og</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2266334552</pqid></control><display><type>article</type><title>Competing Timescales Lead to Oscillations in Shear-Thickening Suspensions</title><source>American Physical Society Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Richards, J A ; Royer, J R ; Liebchen, B ; Guy, B M ; Poon, W C K</creator><creatorcontrib>Richards, J A ; Royer, J R ; Liebchen, B ; Guy, B M ; Poon, W C K</creatorcontrib><description>Competing timescales generate novelty. Here, we show that a coupling between the timescales imposed by instrument inertia and the formation of interparticle frictional contacts in shear-thickening suspensions leads to highly asymmetric shear-rate oscillations. Experiments tuning the presence of oscillations by varying the two timescales support our model. The observed oscillations give access to a shear-jamming portion of the flow curve that is forbidden in conventional rheometry. Moreover, the oscillation frequency allows us to quantify an intrinsic relaxation time for particle contacts. The coupling of fast contact network dynamics to a slower system variable should be generic to many other areas of dense suspension flow, with instrument inertia providing a paradigmatic example.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.123.038004</identifier><identifier>PMID: 31386471</identifier><language>eng</language><publisher>United States: American Physical Society</publisher><subject>Coupling ; Inertia ; Jamming ; Oscillations ; Relaxation time ; Rheometry ; Shear ; Shear thickening (liquids) ; Thickening</subject><ispartof>Physical review letters, 2019-07, Vol.123 (3), p.038004-038004, Article 038004</ispartof><rights>Copyright American Physical Society Jul 19, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-e6f9354d5803090527c4fca4995a39c0d9d0f622133a3f23859892fed0c628c83</citedby><cites>FETCH-LOGICAL-c387t-e6f9354d5803090527c4fca4995a39c0d9d0f622133a3f23859892fed0c628c83</cites><orcidid>0000-0002-2775-6807</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31386471$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Richards, J A</creatorcontrib><creatorcontrib>Royer, J R</creatorcontrib><creatorcontrib>Liebchen, B</creatorcontrib><creatorcontrib>Guy, B M</creatorcontrib><creatorcontrib>Poon, W C K</creatorcontrib><title>Competing Timescales Lead to Oscillations in Shear-Thickening Suspensions</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>Competing timescales generate novelty. Here, we show that a coupling between the timescales imposed by instrument inertia and the formation of interparticle frictional contacts in shear-thickening suspensions leads to highly asymmetric shear-rate oscillations. Experiments tuning the presence of oscillations by varying the two timescales support our model. The observed oscillations give access to a shear-jamming portion of the flow curve that is forbidden in conventional rheometry. Moreover, the oscillation frequency allows us to quantify an intrinsic relaxation time for particle contacts. The coupling of fast contact network dynamics to a slower system variable should be generic to many other areas of dense suspension flow, with instrument inertia providing a paradigmatic example.</description><subject>Coupling</subject><subject>Inertia</subject><subject>Jamming</subject><subject>Oscillations</subject><subject>Relaxation time</subject><subject>Rheometry</subject><subject>Shear</subject><subject>Shear thickening (liquids)</subject><subject>Thickening</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkE1Lw0AQhhdRbK3-hRLw4iV1dicfu0cpfhQKFVvPYd1M7NZ8mU2E_nsTWkVkDnOY530ZHsamHGacA94-b_fuhb6W1LYzLnAGKAGCEzbmECs_5jw4ZWMA5L4CiEfswrkdAHARyXM2Qo4yCmI-Zot5VdTU2vLd29iCnNE5OW9JOvXayls5Y_Nct7YqnWdLb70l3fibrTUfVA6ZdedqKt1wv2Rnmc4dXR33hL0-3G_mT_5y9biY3y19gzJufYoyhWGQhhIQFIQiNkFmdKBUqFEZSFUKWSQER9SYCZShkkpklIKJhDQSJ-zm0Fs31WdHrk0K6wz1b5ZUdS4RIlLYj8Aevf6H7qquKfvvBipCDMJQ9FR0oExTOddQltSNLXSzTzgkg-zkj-ykl50cZPfB6bG-eyso_Y392MVvg1N8Og</recordid><startdate>20190719</startdate><enddate>20190719</enddate><creator>Richards, J A</creator><creator>Royer, J R</creator><creator>Liebchen, B</creator><creator>Guy, B M</creator><creator>Poon, W C K</creator><general>American Physical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2775-6807</orcidid></search><sort><creationdate>20190719</creationdate><title>Competing Timescales Lead to Oscillations in Shear-Thickening Suspensions</title><author>Richards, J A ; Royer, J R ; Liebchen, B ; Guy, B M ; Poon, W C K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-e6f9354d5803090527c4fca4995a39c0d9d0f622133a3f23859892fed0c628c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Coupling</topic><topic>Inertia</topic><topic>Jamming</topic><topic>Oscillations</topic><topic>Relaxation time</topic><topic>Rheometry</topic><topic>Shear</topic><topic>Shear thickening (liquids)</topic><topic>Thickening</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Richards, J A</creatorcontrib><creatorcontrib>Royer, J R</creatorcontrib><creatorcontrib>Liebchen, B</creatorcontrib><creatorcontrib>Guy, B M</creatorcontrib><creatorcontrib>Poon, W C K</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Richards, J A</au><au>Royer, J R</au><au>Liebchen, B</au><au>Guy, B M</au><au>Poon, W C K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Competing Timescales Lead to Oscillations in Shear-Thickening Suspensions</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2019-07-19</date><risdate>2019</risdate><volume>123</volume><issue>3</issue><spage>038004</spage><epage>038004</epage><pages>038004-038004</pages><artnum>038004</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>Competing timescales generate novelty. Here, we show that a coupling between the timescales imposed by instrument inertia and the formation of interparticle frictional contacts in shear-thickening suspensions leads to highly asymmetric shear-rate oscillations. Experiments tuning the presence of oscillations by varying the two timescales support our model. The observed oscillations give access to a shear-jamming portion of the flow curve that is forbidden in conventional rheometry. Moreover, the oscillation frequency allows us to quantify an intrinsic relaxation time for particle contacts. The coupling of fast contact network dynamics to a slower system variable should be generic to many other areas of dense suspension flow, with instrument inertia providing a paradigmatic example.</abstract><cop>United States</cop><pub>American Physical Society</pub><pmid>31386471</pmid><doi>10.1103/PhysRevLett.123.038004</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-2775-6807</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2019-07, Vol.123 (3), p.038004-038004, Article 038004
issn 0031-9007
1079-7114
language eng
recordid cdi_proquest_miscellaneous_2269393923
source American Physical Society Journals; EZB-FREE-00999 freely available EZB journals
subjects Coupling
Inertia
Jamming
Oscillations
Relaxation time
Rheometry
Shear
Shear thickening (liquids)
Thickening
title Competing Timescales Lead to Oscillations in Shear-Thickening Suspensions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T00%3A54%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Competing%20Timescales%20Lead%20to%20Oscillations%20in%20Shear-Thickening%20Suspensions&rft.jtitle=Physical%20review%20letters&rft.au=Richards,%20J%20A&rft.date=2019-07-19&rft.volume=123&rft.issue=3&rft.spage=038004&rft.epage=038004&rft.pages=038004-038004&rft.artnum=038004&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.123.038004&rft_dat=%3Cproquest_cross%3E2266334552%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2266334552&rft_id=info:pmid/31386471&rfr_iscdi=true