Competing Timescales Lead to Oscillations in Shear-Thickening Suspensions
Competing timescales generate novelty. Here, we show that a coupling between the timescales imposed by instrument inertia and the formation of interparticle frictional contacts in shear-thickening suspensions leads to highly asymmetric shear-rate oscillations. Experiments tuning the presence of osci...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2019-07, Vol.123 (3), p.038004-038004, Article 038004 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 038004 |
---|---|
container_issue | 3 |
container_start_page | 038004 |
container_title | Physical review letters |
container_volume | 123 |
creator | Richards, J A Royer, J R Liebchen, B Guy, B M Poon, W C K |
description | Competing timescales generate novelty. Here, we show that a coupling between the timescales imposed by instrument inertia and the formation of interparticle frictional contacts in shear-thickening suspensions leads to highly asymmetric shear-rate oscillations. Experiments tuning the presence of oscillations by varying the two timescales support our model. The observed oscillations give access to a shear-jamming portion of the flow curve that is forbidden in conventional rheometry. Moreover, the oscillation frequency allows us to quantify an intrinsic relaxation time for particle contacts. The coupling of fast contact network dynamics to a slower system variable should be generic to many other areas of dense suspension flow, with instrument inertia providing a paradigmatic example. |
doi_str_mv | 10.1103/PhysRevLett.123.038004 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2269393923</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2266334552</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-e6f9354d5803090527c4fca4995a39c0d9d0f622133a3f23859892fed0c628c83</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRbK3-hRLw4iV1dicfu0cpfhQKFVvPYd1M7NZ8mU2E_nsTWkVkDnOY530ZHsamHGacA94-b_fuhb6W1LYzLnAGKAGCEzbmECs_5jw4ZWMA5L4CiEfswrkdAHARyXM2Qo4yCmI-Zot5VdTU2vLd29iCnNE5OW9JOvXayls5Y_Nct7YqnWdLb70l3fibrTUfVA6ZdedqKt1wv2Rnmc4dXR33hL0-3G_mT_5y9biY3y19gzJufYoyhWGQhhIQFIQiNkFmdKBUqFEZSFUKWSQER9SYCZShkkpklIKJhDQSJ-zm0Fs31WdHrk0K6wz1b5ZUdS4RIlLYj8Aevf6H7qquKfvvBipCDMJQ9FR0oExTOddQltSNLXSzTzgkg-zkj-ykl50cZPfB6bG-eyso_Y392MVvg1N8Og</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2266334552</pqid></control><display><type>article</type><title>Competing Timescales Lead to Oscillations in Shear-Thickening Suspensions</title><source>American Physical Society Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Richards, J A ; Royer, J R ; Liebchen, B ; Guy, B M ; Poon, W C K</creator><creatorcontrib>Richards, J A ; Royer, J R ; Liebchen, B ; Guy, B M ; Poon, W C K</creatorcontrib><description>Competing timescales generate novelty. Here, we show that a coupling between the timescales imposed by instrument inertia and the formation of interparticle frictional contacts in shear-thickening suspensions leads to highly asymmetric shear-rate oscillations. Experiments tuning the presence of oscillations by varying the two timescales support our model. The observed oscillations give access to a shear-jamming portion of the flow curve that is forbidden in conventional rheometry. Moreover, the oscillation frequency allows us to quantify an intrinsic relaxation time for particle contacts. The coupling of fast contact network dynamics to a slower system variable should be generic to many other areas of dense suspension flow, with instrument inertia providing a paradigmatic example.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.123.038004</identifier><identifier>PMID: 31386471</identifier><language>eng</language><publisher>United States: American Physical Society</publisher><subject>Coupling ; Inertia ; Jamming ; Oscillations ; Relaxation time ; Rheometry ; Shear ; Shear thickening (liquids) ; Thickening</subject><ispartof>Physical review letters, 2019-07, Vol.123 (3), p.038004-038004, Article 038004</ispartof><rights>Copyright American Physical Society Jul 19, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-e6f9354d5803090527c4fca4995a39c0d9d0f622133a3f23859892fed0c628c83</citedby><cites>FETCH-LOGICAL-c387t-e6f9354d5803090527c4fca4995a39c0d9d0f622133a3f23859892fed0c628c83</cites><orcidid>0000-0002-2775-6807</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31386471$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Richards, J A</creatorcontrib><creatorcontrib>Royer, J R</creatorcontrib><creatorcontrib>Liebchen, B</creatorcontrib><creatorcontrib>Guy, B M</creatorcontrib><creatorcontrib>Poon, W C K</creatorcontrib><title>Competing Timescales Lead to Oscillations in Shear-Thickening Suspensions</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>Competing timescales generate novelty. Here, we show that a coupling between the timescales imposed by instrument inertia and the formation of interparticle frictional contacts in shear-thickening suspensions leads to highly asymmetric shear-rate oscillations. Experiments tuning the presence of oscillations by varying the two timescales support our model. The observed oscillations give access to a shear-jamming portion of the flow curve that is forbidden in conventional rheometry. Moreover, the oscillation frequency allows us to quantify an intrinsic relaxation time for particle contacts. The coupling of fast contact network dynamics to a slower system variable should be generic to many other areas of dense suspension flow, with instrument inertia providing a paradigmatic example.</description><subject>Coupling</subject><subject>Inertia</subject><subject>Jamming</subject><subject>Oscillations</subject><subject>Relaxation time</subject><subject>Rheometry</subject><subject>Shear</subject><subject>Shear thickening (liquids)</subject><subject>Thickening</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkE1Lw0AQhhdRbK3-hRLw4iV1dicfu0cpfhQKFVvPYd1M7NZ8mU2E_nsTWkVkDnOY530ZHsamHGacA94-b_fuhb6W1LYzLnAGKAGCEzbmECs_5jw4ZWMA5L4CiEfswrkdAHARyXM2Qo4yCmI-Zot5VdTU2vLd29iCnNE5OW9JOvXayls5Y_Nct7YqnWdLb70l3fibrTUfVA6ZdedqKt1wv2Rnmc4dXR33hL0-3G_mT_5y9biY3y19gzJufYoyhWGQhhIQFIQiNkFmdKBUqFEZSFUKWSQER9SYCZShkkpklIKJhDQSJ-zm0Fs31WdHrk0K6wz1b5ZUdS4RIlLYj8Aevf6H7qquKfvvBipCDMJQ9FR0oExTOddQltSNLXSzTzgkg-zkj-ykl50cZPfB6bG-eyso_Y392MVvg1N8Og</recordid><startdate>20190719</startdate><enddate>20190719</enddate><creator>Richards, J A</creator><creator>Royer, J R</creator><creator>Liebchen, B</creator><creator>Guy, B M</creator><creator>Poon, W C K</creator><general>American Physical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2775-6807</orcidid></search><sort><creationdate>20190719</creationdate><title>Competing Timescales Lead to Oscillations in Shear-Thickening Suspensions</title><author>Richards, J A ; Royer, J R ; Liebchen, B ; Guy, B M ; Poon, W C K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-e6f9354d5803090527c4fca4995a39c0d9d0f622133a3f23859892fed0c628c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Coupling</topic><topic>Inertia</topic><topic>Jamming</topic><topic>Oscillations</topic><topic>Relaxation time</topic><topic>Rheometry</topic><topic>Shear</topic><topic>Shear thickening (liquids)</topic><topic>Thickening</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Richards, J A</creatorcontrib><creatorcontrib>Royer, J R</creatorcontrib><creatorcontrib>Liebchen, B</creatorcontrib><creatorcontrib>Guy, B M</creatorcontrib><creatorcontrib>Poon, W C K</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Richards, J A</au><au>Royer, J R</au><au>Liebchen, B</au><au>Guy, B M</au><au>Poon, W C K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Competing Timescales Lead to Oscillations in Shear-Thickening Suspensions</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2019-07-19</date><risdate>2019</risdate><volume>123</volume><issue>3</issue><spage>038004</spage><epage>038004</epage><pages>038004-038004</pages><artnum>038004</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>Competing timescales generate novelty. Here, we show that a coupling between the timescales imposed by instrument inertia and the formation of interparticle frictional contacts in shear-thickening suspensions leads to highly asymmetric shear-rate oscillations. Experiments tuning the presence of oscillations by varying the two timescales support our model. The observed oscillations give access to a shear-jamming portion of the flow curve that is forbidden in conventional rheometry. Moreover, the oscillation frequency allows us to quantify an intrinsic relaxation time for particle contacts. The coupling of fast contact network dynamics to a slower system variable should be generic to many other areas of dense suspension flow, with instrument inertia providing a paradigmatic example.</abstract><cop>United States</cop><pub>American Physical Society</pub><pmid>31386471</pmid><doi>10.1103/PhysRevLett.123.038004</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-2775-6807</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 2019-07, Vol.123 (3), p.038004-038004, Article 038004 |
issn | 0031-9007 1079-7114 |
language | eng |
recordid | cdi_proquest_miscellaneous_2269393923 |
source | American Physical Society Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Coupling Inertia Jamming Oscillations Relaxation time Rheometry Shear Shear thickening (liquids) Thickening |
title | Competing Timescales Lead to Oscillations in Shear-Thickening Suspensions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T00%3A54%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Competing%20Timescales%20Lead%20to%20Oscillations%20in%20Shear-Thickening%20Suspensions&rft.jtitle=Physical%20review%20letters&rft.au=Richards,%20J%20A&rft.date=2019-07-19&rft.volume=123&rft.issue=3&rft.spage=038004&rft.epage=038004&rft.pages=038004-038004&rft.artnum=038004&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.123.038004&rft_dat=%3Cproquest_cross%3E2266334552%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2266334552&rft_id=info:pmid/31386471&rfr_iscdi=true |