Avalanche Carrier Multiplication in Multilayer Black Phosphorus and Avalanche Photodetector

A highly sensitive avalanche photodetector (APD) is fabricated by utilizing the avalanche multiplication mechanism in black phosphorus (BP), where a strong avalanche multiplication of electron–hole pairs is observed. Owing to the small bandgap (0.33 eV) of the multilayer BP, the carrier multiplicati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2019-09, Vol.15 (38), p.e1805352-n/a
Hauptverfasser: Jia, Jingyuan, Jeon, Jaeho, Park, Jin‐Hong, Lee, Byoung Hun, Hwang, Euyheon, Lee, Sungjoo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 38
container_start_page e1805352
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 15
creator Jia, Jingyuan
Jeon, Jaeho
Park, Jin‐Hong
Lee, Byoung Hun
Hwang, Euyheon
Lee, Sungjoo
description A highly sensitive avalanche photodetector (APD) is fabricated by utilizing the avalanche multiplication mechanism in black phosphorus (BP), where a strong avalanche multiplication of electron–hole pairs is observed. Owing to the small bandgap (0.33 eV) of the multilayer BP, the carrier multiplication occurs at a significantly lower electric field than those of other 2D semiconductor materials. In order to further enhance the quantum efficiency and increase the signal‐to‐noise (S/N) ratio, Au nanoparticles (NPs) are integrated on the BP surface, which improves the light absorption by plasmonic effects. The BP–Au‐NPs structure effectively reduces both dark current (≈10 times lower) and onset of avalanche electric field, leading to higher carrier multiplication, photogain, quantum efficiency, and S/N ratio. For the BP–Au‐NPs APD, it is obtained that the external quantum efficiency (EQE) is 382 and the responsivity is 160 A W‐1 at an electric field of 5 kV cm‐1 (Vd ≈ 3.5 V, note that for the BP APD, EQE = 4.77 and responsivity = 2 A W‐1 obtained at the same electric field). The significantly increased performance of the BP APD is promising for low‐power‐consumption, high‐sensitivity, and low‐noise photodevice applications, which can enable high‐performance optical communication and imaging systems. A highly sensitive/efficient black phosphorus‐based avalanche photodetector fully utilizes the avalanche carrier multiplication mechanism. In black phosphorus, a strong avalanche multiplication of electron–hole pairs is observed and the multiplication occurs at a much lower electric field than other 2D semiconductor materials. The significantly increased device performance is promising for low‐power‐consumption, high‐sensitivity, and low‐noise photodevice applications.
doi_str_mv 10.1002/smll.201805352
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2269393645</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2269393645</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3732-620edd1fb9bdfd5b35b4a2c95e063cc022d3aa5cb76b71650a8d374fcf268c353</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhi0EoqWwMqJILCwp_oidZCwVX1IqkICJIXJsR3Vx4mAnoP57UqW0EgvTne6ee3R6AThHcIogxNe-MmaKIUogJRQfgDFiiIQswenhrkdwBE68X0FIEI7iYzAiiCQpwnQM3mdf3PBaLFUw585p5YJFZ1rdGC14q20d6HqYGL7ulzeGi4_geWl9s7Su8wGvZbB39IvWStUq0Vp3Co5Kbrw629YJeLu7fZ0_hNnT_eN8loWCxASHDEMlJSqLtJClpAWhRcSxSKmCjAgBMZaEcyqKmBUxYhTyRJI4KkWJWSIIJRNwNXgbZz875du80l4o0_-kbOdzjFlKUsKiDXr5B13ZztX9dz2VYggTHEc9NR0o4az3TpV543TF3TpHMN_Enm9iz3ex9wcXW21XVEru8N-ceyAdgG9t1PofXf6yyLK9_AczZo-h</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2292008274</pqid></control><display><type>article</type><title>Avalanche Carrier Multiplication in Multilayer Black Phosphorus and Avalanche Photodetector</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Jia, Jingyuan ; Jeon, Jaeho ; Park, Jin‐Hong ; Lee, Byoung Hun ; Hwang, Euyheon ; Lee, Sungjoo</creator><creatorcontrib>Jia, Jingyuan ; Jeon, Jaeho ; Park, Jin‐Hong ; Lee, Byoung Hun ; Hwang, Euyheon ; Lee, Sungjoo</creatorcontrib><description>A highly sensitive avalanche photodetector (APD) is fabricated by utilizing the avalanche multiplication mechanism in black phosphorus (BP), where a strong avalanche multiplication of electron–hole pairs is observed. Owing to the small bandgap (0.33 eV) of the multilayer BP, the carrier multiplication occurs at a significantly lower electric field than those of other 2D semiconductor materials. In order to further enhance the quantum efficiency and increase the signal‐to‐noise (S/N) ratio, Au nanoparticles (NPs) are integrated on the BP surface, which improves the light absorption by plasmonic effects. The BP–Au‐NPs structure effectively reduces both dark current (≈10 times lower) and onset of avalanche electric field, leading to higher carrier multiplication, photogain, quantum efficiency, and S/N ratio. For the BP–Au‐NPs APD, it is obtained that the external quantum efficiency (EQE) is 382 and the responsivity is 160 A W‐1 at an electric field of 5 kV cm‐1 (Vd ≈ 3.5 V, note that for the BP APD, EQE = 4.77 and responsivity = 2 A W‐1 obtained at the same electric field). The significantly increased performance of the BP APD is promising for low‐power‐consumption, high‐sensitivity, and low‐noise photodevice applications, which can enable high‐performance optical communication and imaging systems. A highly sensitive/efficient black phosphorus‐based avalanche photodetector fully utilizes the avalanche carrier multiplication mechanism. In black phosphorus, a strong avalanche multiplication of electron–hole pairs is observed and the multiplication occurs at a much lower electric field than other 2D semiconductor materials. The significantly increased device performance is promising for low‐power‐consumption, high‐sensitivity, and low‐noise photodevice applications.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.201805352</identifier><identifier>PMID: 31389125</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Au nanoparticles ; avalanche photodetectors ; black phosphorus ; Dark current ; Efficiency ; Electric fields ; Electromagnetic absorption ; Electron avalanche ; Gold ; Multilayers ; Multiplication ; Nanoparticles ; Nanotechnology ; Noise sensitivity ; Optical communication ; Phosphorus ; Photometers ; plasmonic effects ; Power consumption ; Quantum efficiency ; Semiconductor materials ; Signal to noise ratio</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2019-09, Vol.15 (38), p.e1805352-n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2019 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3732-620edd1fb9bdfd5b35b4a2c95e063cc022d3aa5cb76b71650a8d374fcf268c353</citedby><cites>FETCH-LOGICAL-c3732-620edd1fb9bdfd5b35b4a2c95e063cc022d3aa5cb76b71650a8d374fcf268c353</cites><orcidid>0000-0003-1284-3593</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.201805352$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.201805352$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,782,786,1419,27931,27932,45581,45582</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31389125$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jia, Jingyuan</creatorcontrib><creatorcontrib>Jeon, Jaeho</creatorcontrib><creatorcontrib>Park, Jin‐Hong</creatorcontrib><creatorcontrib>Lee, Byoung Hun</creatorcontrib><creatorcontrib>Hwang, Euyheon</creatorcontrib><creatorcontrib>Lee, Sungjoo</creatorcontrib><title>Avalanche Carrier Multiplication in Multilayer Black Phosphorus and Avalanche Photodetector</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>A highly sensitive avalanche photodetector (APD) is fabricated by utilizing the avalanche multiplication mechanism in black phosphorus (BP), where a strong avalanche multiplication of electron–hole pairs is observed. Owing to the small bandgap (0.33 eV) of the multilayer BP, the carrier multiplication occurs at a significantly lower electric field than those of other 2D semiconductor materials. In order to further enhance the quantum efficiency and increase the signal‐to‐noise (S/N) ratio, Au nanoparticles (NPs) are integrated on the BP surface, which improves the light absorption by plasmonic effects. The BP–Au‐NPs structure effectively reduces both dark current (≈10 times lower) and onset of avalanche electric field, leading to higher carrier multiplication, photogain, quantum efficiency, and S/N ratio. For the BP–Au‐NPs APD, it is obtained that the external quantum efficiency (EQE) is 382 and the responsivity is 160 A W‐1 at an electric field of 5 kV cm‐1 (Vd ≈ 3.5 V, note that for the BP APD, EQE = 4.77 and responsivity = 2 A W‐1 obtained at the same electric field). The significantly increased performance of the BP APD is promising for low‐power‐consumption, high‐sensitivity, and low‐noise photodevice applications, which can enable high‐performance optical communication and imaging systems. A highly sensitive/efficient black phosphorus‐based avalanche photodetector fully utilizes the avalanche carrier multiplication mechanism. In black phosphorus, a strong avalanche multiplication of electron–hole pairs is observed and the multiplication occurs at a much lower electric field than other 2D semiconductor materials. The significantly increased device performance is promising for low‐power‐consumption, high‐sensitivity, and low‐noise photodevice applications.</description><subject>Au nanoparticles</subject><subject>avalanche photodetectors</subject><subject>black phosphorus</subject><subject>Dark current</subject><subject>Efficiency</subject><subject>Electric fields</subject><subject>Electromagnetic absorption</subject><subject>Electron avalanche</subject><subject>Gold</subject><subject>Multilayers</subject><subject>Multiplication</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Noise sensitivity</subject><subject>Optical communication</subject><subject>Phosphorus</subject><subject>Photometers</subject><subject>plasmonic effects</subject><subject>Power consumption</subject><subject>Quantum efficiency</subject><subject>Semiconductor materials</subject><subject>Signal to noise ratio</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAQhi0EoqWwMqJILCwp_oidZCwVX1IqkICJIXJsR3Vx4mAnoP57UqW0EgvTne6ee3R6AThHcIogxNe-MmaKIUogJRQfgDFiiIQswenhrkdwBE68X0FIEI7iYzAiiCQpwnQM3mdf3PBaLFUw585p5YJFZ1rdGC14q20d6HqYGL7ulzeGi4_geWl9s7Su8wGvZbB39IvWStUq0Vp3Co5Kbrw629YJeLu7fZ0_hNnT_eN8loWCxASHDEMlJSqLtJClpAWhRcSxSKmCjAgBMZaEcyqKmBUxYhTyRJI4KkWJWSIIJRNwNXgbZz875du80l4o0_-kbOdzjFlKUsKiDXr5B13ZztX9dz2VYggTHEc9NR0o4az3TpV543TF3TpHMN_Enm9iz3ex9wcXW21XVEru8N-ceyAdgG9t1PofXf6yyLK9_AczZo-h</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Jia, Jingyuan</creator><creator>Jeon, Jaeho</creator><creator>Park, Jin‐Hong</creator><creator>Lee, Byoung Hun</creator><creator>Hwang, Euyheon</creator><creator>Lee, Sungjoo</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1284-3593</orcidid></search><sort><creationdate>20190901</creationdate><title>Avalanche Carrier Multiplication in Multilayer Black Phosphorus and Avalanche Photodetector</title><author>Jia, Jingyuan ; Jeon, Jaeho ; Park, Jin‐Hong ; Lee, Byoung Hun ; Hwang, Euyheon ; Lee, Sungjoo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3732-620edd1fb9bdfd5b35b4a2c95e063cc022d3aa5cb76b71650a8d374fcf268c353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Au nanoparticles</topic><topic>avalanche photodetectors</topic><topic>black phosphorus</topic><topic>Dark current</topic><topic>Efficiency</topic><topic>Electric fields</topic><topic>Electromagnetic absorption</topic><topic>Electron avalanche</topic><topic>Gold</topic><topic>Multilayers</topic><topic>Multiplication</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Noise sensitivity</topic><topic>Optical communication</topic><topic>Phosphorus</topic><topic>Photometers</topic><topic>plasmonic effects</topic><topic>Power consumption</topic><topic>Quantum efficiency</topic><topic>Semiconductor materials</topic><topic>Signal to noise ratio</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jia, Jingyuan</creatorcontrib><creatorcontrib>Jeon, Jaeho</creatorcontrib><creatorcontrib>Park, Jin‐Hong</creatorcontrib><creatorcontrib>Lee, Byoung Hun</creatorcontrib><creatorcontrib>Hwang, Euyheon</creatorcontrib><creatorcontrib>Lee, Sungjoo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jia, Jingyuan</au><au>Jeon, Jaeho</au><au>Park, Jin‐Hong</au><au>Lee, Byoung Hun</au><au>Hwang, Euyheon</au><au>Lee, Sungjoo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Avalanche Carrier Multiplication in Multilayer Black Phosphorus and Avalanche Photodetector</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2019-09-01</date><risdate>2019</risdate><volume>15</volume><issue>38</issue><spage>e1805352</spage><epage>n/a</epage><pages>e1805352-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>A highly sensitive avalanche photodetector (APD) is fabricated by utilizing the avalanche multiplication mechanism in black phosphorus (BP), where a strong avalanche multiplication of electron–hole pairs is observed. Owing to the small bandgap (0.33 eV) of the multilayer BP, the carrier multiplication occurs at a significantly lower electric field than those of other 2D semiconductor materials. In order to further enhance the quantum efficiency and increase the signal‐to‐noise (S/N) ratio, Au nanoparticles (NPs) are integrated on the BP surface, which improves the light absorption by plasmonic effects. The BP–Au‐NPs structure effectively reduces both dark current (≈10 times lower) and onset of avalanche electric field, leading to higher carrier multiplication, photogain, quantum efficiency, and S/N ratio. For the BP–Au‐NPs APD, it is obtained that the external quantum efficiency (EQE) is 382 and the responsivity is 160 A W‐1 at an electric field of 5 kV cm‐1 (Vd ≈ 3.5 V, note that for the BP APD, EQE = 4.77 and responsivity = 2 A W‐1 obtained at the same electric field). The significantly increased performance of the BP APD is promising for low‐power‐consumption, high‐sensitivity, and low‐noise photodevice applications, which can enable high‐performance optical communication and imaging systems. A highly sensitive/efficient black phosphorus‐based avalanche photodetector fully utilizes the avalanche carrier multiplication mechanism. In black phosphorus, a strong avalanche multiplication of electron–hole pairs is observed and the multiplication occurs at a much lower electric field than other 2D semiconductor materials. The significantly increased device performance is promising for low‐power‐consumption, high‐sensitivity, and low‐noise photodevice applications.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31389125</pmid><doi>10.1002/smll.201805352</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-1284-3593</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2019-09, Vol.15 (38), p.e1805352-n/a
issn 1613-6810
1613-6829
language eng
recordid cdi_proquest_miscellaneous_2269393645
source Wiley Online Library - AutoHoldings Journals
subjects Au nanoparticles
avalanche photodetectors
black phosphorus
Dark current
Efficiency
Electric fields
Electromagnetic absorption
Electron avalanche
Gold
Multilayers
Multiplication
Nanoparticles
Nanotechnology
Noise sensitivity
Optical communication
Phosphorus
Photometers
plasmonic effects
Power consumption
Quantum efficiency
Semiconductor materials
Signal to noise ratio
title Avalanche Carrier Multiplication in Multilayer Black Phosphorus and Avalanche Photodetector
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T04%3A14%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Avalanche%20Carrier%20Multiplication%20in%20Multilayer%20Black%20Phosphorus%20and%20Avalanche%20Photodetector&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Jia,%20Jingyuan&rft.date=2019-09-01&rft.volume=15&rft.issue=38&rft.spage=e1805352&rft.epage=n/a&rft.pages=e1805352-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.201805352&rft_dat=%3Cproquest_cross%3E2269393645%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2292008274&rft_id=info:pmid/31389125&rfr_iscdi=true