Avalanche Carrier Multiplication in Multilayer Black Phosphorus and Avalanche Photodetector
A highly sensitive avalanche photodetector (APD) is fabricated by utilizing the avalanche multiplication mechanism in black phosphorus (BP), where a strong avalanche multiplication of electron–hole pairs is observed. Owing to the small bandgap (0.33 eV) of the multilayer BP, the carrier multiplicati...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2019-09, Vol.15 (38), p.e1805352-n/a |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 38 |
container_start_page | e1805352 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 15 |
creator | Jia, Jingyuan Jeon, Jaeho Park, Jin‐Hong Lee, Byoung Hun Hwang, Euyheon Lee, Sungjoo |
description | A highly sensitive avalanche photodetector (APD) is fabricated by utilizing the avalanche multiplication mechanism in black phosphorus (BP), where a strong avalanche multiplication of electron–hole pairs is observed. Owing to the small bandgap (0.33 eV) of the multilayer BP, the carrier multiplication occurs at a significantly lower electric field than those of other 2D semiconductor materials. In order to further enhance the quantum efficiency and increase the signal‐to‐noise (S/N) ratio, Au nanoparticles (NPs) are integrated on the BP surface, which improves the light absorption by plasmonic effects. The BP–Au‐NPs structure effectively reduces both dark current (≈10 times lower) and onset of avalanche electric field, leading to higher carrier multiplication, photogain, quantum efficiency, and S/N ratio. For the BP–Au‐NPs APD, it is obtained that the external quantum efficiency (EQE) is 382 and the responsivity is 160 A W‐1 at an electric field of 5 kV cm‐1 (Vd ≈ 3.5 V, note that for the BP APD, EQE = 4.77 and responsivity = 2 A W‐1 obtained at the same electric field). The significantly increased performance of the BP APD is promising for low‐power‐consumption, high‐sensitivity, and low‐noise photodevice applications, which can enable high‐performance optical communication and imaging systems.
A highly sensitive/efficient black phosphorus‐based avalanche photodetector fully utilizes the avalanche carrier multiplication mechanism. In black phosphorus, a strong avalanche multiplication of electron–hole pairs is observed and the multiplication occurs at a much lower electric field than other 2D semiconductor materials. The significantly increased device performance is promising for low‐power‐consumption, high‐sensitivity, and low‐noise photodevice applications. |
doi_str_mv | 10.1002/smll.201805352 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2269393645</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2269393645</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3732-620edd1fb9bdfd5b35b4a2c95e063cc022d3aa5cb76b71650a8d374fcf268c353</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhi0EoqWwMqJILCwp_oidZCwVX1IqkICJIXJsR3Vx4mAnoP57UqW0EgvTne6ee3R6AThHcIogxNe-MmaKIUogJRQfgDFiiIQswenhrkdwBE68X0FIEI7iYzAiiCQpwnQM3mdf3PBaLFUw585p5YJFZ1rdGC14q20d6HqYGL7ulzeGi4_geWl9s7Su8wGvZbB39IvWStUq0Vp3Co5Kbrw629YJeLu7fZ0_hNnT_eN8loWCxASHDEMlJSqLtJClpAWhRcSxSKmCjAgBMZaEcyqKmBUxYhTyRJI4KkWJWSIIJRNwNXgbZz875du80l4o0_-kbOdzjFlKUsKiDXr5B13ZztX9dz2VYggTHEc9NR0o4az3TpV543TF3TpHMN_Enm9iz3ex9wcXW21XVEru8N-ceyAdgG9t1PofXf6yyLK9_AczZo-h</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2292008274</pqid></control><display><type>article</type><title>Avalanche Carrier Multiplication in Multilayer Black Phosphorus and Avalanche Photodetector</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Jia, Jingyuan ; Jeon, Jaeho ; Park, Jin‐Hong ; Lee, Byoung Hun ; Hwang, Euyheon ; Lee, Sungjoo</creator><creatorcontrib>Jia, Jingyuan ; Jeon, Jaeho ; Park, Jin‐Hong ; Lee, Byoung Hun ; Hwang, Euyheon ; Lee, Sungjoo</creatorcontrib><description>A highly sensitive avalanche photodetector (APD) is fabricated by utilizing the avalanche multiplication mechanism in black phosphorus (BP), where a strong avalanche multiplication of electron–hole pairs is observed. Owing to the small bandgap (0.33 eV) of the multilayer BP, the carrier multiplication occurs at a significantly lower electric field than those of other 2D semiconductor materials. In order to further enhance the quantum efficiency and increase the signal‐to‐noise (S/N) ratio, Au nanoparticles (NPs) are integrated on the BP surface, which improves the light absorption by plasmonic effects. The BP–Au‐NPs structure effectively reduces both dark current (≈10 times lower) and onset of avalanche electric field, leading to higher carrier multiplication, photogain, quantum efficiency, and S/N ratio. For the BP–Au‐NPs APD, it is obtained that the external quantum efficiency (EQE) is 382 and the responsivity is 160 A W‐1 at an electric field of 5 kV cm‐1 (Vd ≈ 3.5 V, note that for the BP APD, EQE = 4.77 and responsivity = 2 A W‐1 obtained at the same electric field). The significantly increased performance of the BP APD is promising for low‐power‐consumption, high‐sensitivity, and low‐noise photodevice applications, which can enable high‐performance optical communication and imaging systems.
A highly sensitive/efficient black phosphorus‐based avalanche photodetector fully utilizes the avalanche carrier multiplication mechanism. In black phosphorus, a strong avalanche multiplication of electron–hole pairs is observed and the multiplication occurs at a much lower electric field than other 2D semiconductor materials. The significantly increased device performance is promising for low‐power‐consumption, high‐sensitivity, and low‐noise photodevice applications.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.201805352</identifier><identifier>PMID: 31389125</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Au nanoparticles ; avalanche photodetectors ; black phosphorus ; Dark current ; Efficiency ; Electric fields ; Electromagnetic absorption ; Electron avalanche ; Gold ; Multilayers ; Multiplication ; Nanoparticles ; Nanotechnology ; Noise sensitivity ; Optical communication ; Phosphorus ; Photometers ; plasmonic effects ; Power consumption ; Quantum efficiency ; Semiconductor materials ; Signal to noise ratio</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2019-09, Vol.15 (38), p.e1805352-n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3732-620edd1fb9bdfd5b35b4a2c95e063cc022d3aa5cb76b71650a8d374fcf268c353</citedby><cites>FETCH-LOGICAL-c3732-620edd1fb9bdfd5b35b4a2c95e063cc022d3aa5cb76b71650a8d374fcf268c353</cites><orcidid>0000-0003-1284-3593</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.201805352$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.201805352$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,782,786,1419,27931,27932,45581,45582</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31389125$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jia, Jingyuan</creatorcontrib><creatorcontrib>Jeon, Jaeho</creatorcontrib><creatorcontrib>Park, Jin‐Hong</creatorcontrib><creatorcontrib>Lee, Byoung Hun</creatorcontrib><creatorcontrib>Hwang, Euyheon</creatorcontrib><creatorcontrib>Lee, Sungjoo</creatorcontrib><title>Avalanche Carrier Multiplication in Multilayer Black Phosphorus and Avalanche Photodetector</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>A highly sensitive avalanche photodetector (APD) is fabricated by utilizing the avalanche multiplication mechanism in black phosphorus (BP), where a strong avalanche multiplication of electron–hole pairs is observed. Owing to the small bandgap (0.33 eV) of the multilayer BP, the carrier multiplication occurs at a significantly lower electric field than those of other 2D semiconductor materials. In order to further enhance the quantum efficiency and increase the signal‐to‐noise (S/N) ratio, Au nanoparticles (NPs) are integrated on the BP surface, which improves the light absorption by plasmonic effects. The BP–Au‐NPs structure effectively reduces both dark current (≈10 times lower) and onset of avalanche electric field, leading to higher carrier multiplication, photogain, quantum efficiency, and S/N ratio. For the BP–Au‐NPs APD, it is obtained that the external quantum efficiency (EQE) is 382 and the responsivity is 160 A W‐1 at an electric field of 5 kV cm‐1 (Vd ≈ 3.5 V, note that for the BP APD, EQE = 4.77 and responsivity = 2 A W‐1 obtained at the same electric field). The significantly increased performance of the BP APD is promising for low‐power‐consumption, high‐sensitivity, and low‐noise photodevice applications, which can enable high‐performance optical communication and imaging systems.
A highly sensitive/efficient black phosphorus‐based avalanche photodetector fully utilizes the avalanche carrier multiplication mechanism. In black phosphorus, a strong avalanche multiplication of electron–hole pairs is observed and the multiplication occurs at a much lower electric field than other 2D semiconductor materials. The significantly increased device performance is promising for low‐power‐consumption, high‐sensitivity, and low‐noise photodevice applications.</description><subject>Au nanoparticles</subject><subject>avalanche photodetectors</subject><subject>black phosphorus</subject><subject>Dark current</subject><subject>Efficiency</subject><subject>Electric fields</subject><subject>Electromagnetic absorption</subject><subject>Electron avalanche</subject><subject>Gold</subject><subject>Multilayers</subject><subject>Multiplication</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Noise sensitivity</subject><subject>Optical communication</subject><subject>Phosphorus</subject><subject>Photometers</subject><subject>plasmonic effects</subject><subject>Power consumption</subject><subject>Quantum efficiency</subject><subject>Semiconductor materials</subject><subject>Signal to noise ratio</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAQhi0EoqWwMqJILCwp_oidZCwVX1IqkICJIXJsR3Vx4mAnoP57UqW0EgvTne6ee3R6AThHcIogxNe-MmaKIUogJRQfgDFiiIQswenhrkdwBE68X0FIEI7iYzAiiCQpwnQM3mdf3PBaLFUw585p5YJFZ1rdGC14q20d6HqYGL7ulzeGi4_geWl9s7Su8wGvZbB39IvWStUq0Vp3Co5Kbrw629YJeLu7fZ0_hNnT_eN8loWCxASHDEMlJSqLtJClpAWhRcSxSKmCjAgBMZaEcyqKmBUxYhTyRJI4KkWJWSIIJRNwNXgbZz875du80l4o0_-kbOdzjFlKUsKiDXr5B13ZztX9dz2VYggTHEc9NR0o4az3TpV543TF3TpHMN_Enm9iz3ex9wcXW21XVEru8N-ceyAdgG9t1PofXf6yyLK9_AczZo-h</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Jia, Jingyuan</creator><creator>Jeon, Jaeho</creator><creator>Park, Jin‐Hong</creator><creator>Lee, Byoung Hun</creator><creator>Hwang, Euyheon</creator><creator>Lee, Sungjoo</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1284-3593</orcidid></search><sort><creationdate>20190901</creationdate><title>Avalanche Carrier Multiplication in Multilayer Black Phosphorus and Avalanche Photodetector</title><author>Jia, Jingyuan ; Jeon, Jaeho ; Park, Jin‐Hong ; Lee, Byoung Hun ; Hwang, Euyheon ; Lee, Sungjoo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3732-620edd1fb9bdfd5b35b4a2c95e063cc022d3aa5cb76b71650a8d374fcf268c353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Au nanoparticles</topic><topic>avalanche photodetectors</topic><topic>black phosphorus</topic><topic>Dark current</topic><topic>Efficiency</topic><topic>Electric fields</topic><topic>Electromagnetic absorption</topic><topic>Electron avalanche</topic><topic>Gold</topic><topic>Multilayers</topic><topic>Multiplication</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Noise sensitivity</topic><topic>Optical communication</topic><topic>Phosphorus</topic><topic>Photometers</topic><topic>plasmonic effects</topic><topic>Power consumption</topic><topic>Quantum efficiency</topic><topic>Semiconductor materials</topic><topic>Signal to noise ratio</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jia, Jingyuan</creatorcontrib><creatorcontrib>Jeon, Jaeho</creatorcontrib><creatorcontrib>Park, Jin‐Hong</creatorcontrib><creatorcontrib>Lee, Byoung Hun</creatorcontrib><creatorcontrib>Hwang, Euyheon</creatorcontrib><creatorcontrib>Lee, Sungjoo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jia, Jingyuan</au><au>Jeon, Jaeho</au><au>Park, Jin‐Hong</au><au>Lee, Byoung Hun</au><au>Hwang, Euyheon</au><au>Lee, Sungjoo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Avalanche Carrier Multiplication in Multilayer Black Phosphorus and Avalanche Photodetector</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2019-09-01</date><risdate>2019</risdate><volume>15</volume><issue>38</issue><spage>e1805352</spage><epage>n/a</epage><pages>e1805352-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>A highly sensitive avalanche photodetector (APD) is fabricated by utilizing the avalanche multiplication mechanism in black phosphorus (BP), where a strong avalanche multiplication of electron–hole pairs is observed. Owing to the small bandgap (0.33 eV) of the multilayer BP, the carrier multiplication occurs at a significantly lower electric field than those of other 2D semiconductor materials. In order to further enhance the quantum efficiency and increase the signal‐to‐noise (S/N) ratio, Au nanoparticles (NPs) are integrated on the BP surface, which improves the light absorption by plasmonic effects. The BP–Au‐NPs structure effectively reduces both dark current (≈10 times lower) and onset of avalanche electric field, leading to higher carrier multiplication, photogain, quantum efficiency, and S/N ratio. For the BP–Au‐NPs APD, it is obtained that the external quantum efficiency (EQE) is 382 and the responsivity is 160 A W‐1 at an electric field of 5 kV cm‐1 (Vd ≈ 3.5 V, note that for the BP APD, EQE = 4.77 and responsivity = 2 A W‐1 obtained at the same electric field). The significantly increased performance of the BP APD is promising for low‐power‐consumption, high‐sensitivity, and low‐noise photodevice applications, which can enable high‐performance optical communication and imaging systems.
A highly sensitive/efficient black phosphorus‐based avalanche photodetector fully utilizes the avalanche carrier multiplication mechanism. In black phosphorus, a strong avalanche multiplication of electron–hole pairs is observed and the multiplication occurs at a much lower electric field than other 2D semiconductor materials. The significantly increased device performance is promising for low‐power‐consumption, high‐sensitivity, and low‐noise photodevice applications.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31389125</pmid><doi>10.1002/smll.201805352</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-1284-3593</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2019-09, Vol.15 (38), p.e1805352-n/a |
issn | 1613-6810 1613-6829 |
language | eng |
recordid | cdi_proquest_miscellaneous_2269393645 |
source | Wiley Online Library - AutoHoldings Journals |
subjects | Au nanoparticles avalanche photodetectors black phosphorus Dark current Efficiency Electric fields Electromagnetic absorption Electron avalanche Gold Multilayers Multiplication Nanoparticles Nanotechnology Noise sensitivity Optical communication Phosphorus Photometers plasmonic effects Power consumption Quantum efficiency Semiconductor materials Signal to noise ratio |
title | Avalanche Carrier Multiplication in Multilayer Black Phosphorus and Avalanche Photodetector |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T04%3A14%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Avalanche%20Carrier%20Multiplication%20in%20Multilayer%20Black%20Phosphorus%20and%20Avalanche%20Photodetector&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Jia,%20Jingyuan&rft.date=2019-09-01&rft.volume=15&rft.issue=38&rft.spage=e1805352&rft.epage=n/a&rft.pages=e1805352-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.201805352&rft_dat=%3Cproquest_cross%3E2269393645%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2292008274&rft_id=info:pmid/31389125&rfr_iscdi=true |