Enhanced tomato plant growth in soil under reduced P supply through microbial inoculants and microbiome shifts

ABSTRACT Soil microbial communities interact with roots, affecting plant growth and nutrient acquisition. In the present study, we aimed to decipher the effects of the inoculants Trichoderma harzianum T-22, Pseudomonas sp. DSMZ 13134, Bacillus amyloliquefaciens FZB42 or Pseudomonas sp. RU47 on the r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:FEMS microbiology ecology 2019-09, Vol.95 (9), p.1
Hauptverfasser: Eltlbany, Namis, Baklawa, Mohamed, Ding, Guo-Chun, Nassal, Dinah, Weber, Nino, Kandeler, Ellen, Neumann, Günter, Ludewig, Uwe, van Overbeek, Leo, Smalla, Kornelia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page 1
container_title FEMS microbiology ecology
container_volume 95
creator Eltlbany, Namis
Baklawa, Mohamed
Ding, Guo-Chun
Nassal, Dinah
Weber, Nino
Kandeler, Ellen
Neumann, Günter
Ludewig, Uwe
van Overbeek, Leo
Smalla, Kornelia
description ABSTRACT Soil microbial communities interact with roots, affecting plant growth and nutrient acquisition. In the present study, we aimed to decipher the effects of the inoculants Trichoderma harzianum T-22, Pseudomonas sp. DSMZ 13134, Bacillus amyloliquefaciens FZB42 or Pseudomonas sp. RU47 on the rhizosphere microbial community and their beneficial effects on tomato plants grown in moderately low phosphorous soil under greenhouse conditions. We analyzed the plant mass, inoculant colony forming units and rhizosphere communities on 15, 22, 29 and 43 days after sowing. Selective plating showed that the bacterial inoculants had a good rhizocompetence and accelerated shoot and root growth and nutrient accumulation. 16S rRNA gene fingerprints indicated changes in the rhizosphere bacterial community composition. Amplicon sequencing revealed that rhizosphere bacterial communities from plants treated with bacterial inoculants were more similar to each other and distinct from those of the control and the Trichoderma inoculated plants at harvest time, and numerous dynamic taxa were identified. In conclusion, likely both, inoculants and the rhizosphere microbiome shifts, stimulated early plant growth mainly by improved spatial acquisition of available nutrients via root growth promotion. At harvest, all tomato plants were P-deficient, suggesting a limited contribution of inoculants and the microbiome shifts to the solubilization of sparingly soluble soil P. Tomato plants inoculated with the bacterial strains showed a remarkably enhanced biomass production and nutrient accumulation triggered by the inoculants and likely also by the microbiome shifts.
doi_str_mv 10.1093/femsec/fiz124
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2268945573</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A606789895</galeid><oup_id>10.1093/femsec/fiz124</oup_id><sourcerecordid>A606789895</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-8773701bb9b91fc436e81069a594f54a88c4d1301f40f2680d0bf4d2921472963</originalsourceid><addsrcrecordid>eNqFkctrFTEYxYMotlaXbiXgxs20ec1MsiylaqGgC12HTB53UmaSMQ-k_evN5ba2iiBZJCS_czj5DgBvMTrFSNAzZ9ds9Znzd5iwZ-AY9yPrBsHw8yfnI_Aq5xuEcE8ZegmOKKZ8wL04BuEyzCpoa2CJqyoRbosKBe5S_Flm6APM0S-wBmMTTNbUPfkV5rptyy0sc4p1N8PV6xQnr5YmiLruHTJUwTw8xNXCPHtX8mvwwqkl2zf3-wn4_vHy28Xn7vrLp6uL8-tOM4JLx8eRjghPk5gEdprRwXKMBqF6wVzPFOeaGUwRdgw5MnBk0OSYIYJgNhIx0BPw4eC7pfij2lzk6rO2S4tmY82SNJFgfT_Shr7_C72JNYWWThIqBOdtyuSR2qnFSh9cLEnpvak8H9AwcsFF36jTf1BtGdtGEYN1vt3_IegOgjannJN1ckt-VelWYiT3_cpDv_LQb-Pf3Yet02rNb_qh0MePx7r9x-sXFdmvAw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2399880932</pqid></control><display><type>article</type><title>Enhanced tomato plant growth in soil under reduced P supply through microbial inoculants and microbiome shifts</title><source>Oxford Journals Open Access Collection</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Eltlbany, Namis ; Baklawa, Mohamed ; Ding, Guo-Chun ; Nassal, Dinah ; Weber, Nino ; Kandeler, Ellen ; Neumann, Günter ; Ludewig, Uwe ; van Overbeek, Leo ; Smalla, Kornelia</creator><creatorcontrib>Eltlbany, Namis ; Baklawa, Mohamed ; Ding, Guo-Chun ; Nassal, Dinah ; Weber, Nino ; Kandeler, Ellen ; Neumann, Günter ; Ludewig, Uwe ; van Overbeek, Leo ; Smalla, Kornelia</creatorcontrib><description>ABSTRACT Soil microbial communities interact with roots, affecting plant growth and nutrient acquisition. In the present study, we aimed to decipher the effects of the inoculants Trichoderma harzianum T-22, Pseudomonas sp. DSMZ 13134, Bacillus amyloliquefaciens FZB42 or Pseudomonas sp. RU47 on the rhizosphere microbial community and their beneficial effects on tomato plants grown in moderately low phosphorous soil under greenhouse conditions. We analyzed the plant mass, inoculant colony forming units and rhizosphere communities on 15, 22, 29 and 43 days after sowing. Selective plating showed that the bacterial inoculants had a good rhizocompetence and accelerated shoot and root growth and nutrient accumulation. 16S rRNA gene fingerprints indicated changes in the rhizosphere bacterial community composition. Amplicon sequencing revealed that rhizosphere bacterial communities from plants treated with bacterial inoculants were more similar to each other and distinct from those of the control and the Trichoderma inoculated plants at harvest time, and numerous dynamic taxa were identified. In conclusion, likely both, inoculants and the rhizosphere microbiome shifts, stimulated early plant growth mainly by improved spatial acquisition of available nutrients via root growth promotion. At harvest, all tomato plants were P-deficient, suggesting a limited contribution of inoculants and the microbiome shifts to the solubilization of sparingly soluble soil P. Tomato plants inoculated with the bacterial strains showed a remarkably enhanced biomass production and nutrient accumulation triggered by the inoculants and likely also by the microbiome shifts.</description><identifier>ISSN: 1574-6941</identifier><identifier>ISSN: 0168-6496</identifier><identifier>EISSN: 1574-6941</identifier><identifier>DOI: 10.1093/femsec/fiz124</identifier><identifier>PMID: 31386159</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Bacteria ; Community composition ; Ecology ; Environmental aspects ; Fungi ; Growth ; Microbial activity ; Microbial colonies ; Microbiology ; Microbiomes ; Microorganisms ; Nutrient availability ; Nutrients ; Phosphorus in the body ; Plant growth ; Planting ; Pseudomonas ; Rhizosphere ; rRNA 16S ; Selective plating ; Soil conditions ; Soils ; Solubilization ; Tomatoes</subject><ispartof>FEMS microbiology ecology, 2019-09, Vol.95 (9), p.1</ispartof><rights>FEMS 2019. 2019</rights><rights>FEMS 2019.</rights><rights>COPYRIGHT 2019 Oxford University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-8773701bb9b91fc436e81069a594f54a88c4d1301f40f2680d0bf4d2921472963</citedby><cites>FETCH-LOGICAL-c421t-8773701bb9b91fc436e81069a594f54a88c4d1301f40f2680d0bf4d2921472963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31386159$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Eltlbany, Namis</creatorcontrib><creatorcontrib>Baklawa, Mohamed</creatorcontrib><creatorcontrib>Ding, Guo-Chun</creatorcontrib><creatorcontrib>Nassal, Dinah</creatorcontrib><creatorcontrib>Weber, Nino</creatorcontrib><creatorcontrib>Kandeler, Ellen</creatorcontrib><creatorcontrib>Neumann, Günter</creatorcontrib><creatorcontrib>Ludewig, Uwe</creatorcontrib><creatorcontrib>van Overbeek, Leo</creatorcontrib><creatorcontrib>Smalla, Kornelia</creatorcontrib><title>Enhanced tomato plant growth in soil under reduced P supply through microbial inoculants and microbiome shifts</title><title>FEMS microbiology ecology</title><addtitle>FEMS Microbiol Ecol</addtitle><description>ABSTRACT Soil microbial communities interact with roots, affecting plant growth and nutrient acquisition. In the present study, we aimed to decipher the effects of the inoculants Trichoderma harzianum T-22, Pseudomonas sp. DSMZ 13134, Bacillus amyloliquefaciens FZB42 or Pseudomonas sp. RU47 on the rhizosphere microbial community and their beneficial effects on tomato plants grown in moderately low phosphorous soil under greenhouse conditions. We analyzed the plant mass, inoculant colony forming units and rhizosphere communities on 15, 22, 29 and 43 days after sowing. Selective plating showed that the bacterial inoculants had a good rhizocompetence and accelerated shoot and root growth and nutrient accumulation. 16S rRNA gene fingerprints indicated changes in the rhizosphere bacterial community composition. Amplicon sequencing revealed that rhizosphere bacterial communities from plants treated with bacterial inoculants were more similar to each other and distinct from those of the control and the Trichoderma inoculated plants at harvest time, and numerous dynamic taxa were identified. In conclusion, likely both, inoculants and the rhizosphere microbiome shifts, stimulated early plant growth mainly by improved spatial acquisition of available nutrients via root growth promotion. At harvest, all tomato plants were P-deficient, suggesting a limited contribution of inoculants and the microbiome shifts to the solubilization of sparingly soluble soil P. Tomato plants inoculated with the bacterial strains showed a remarkably enhanced biomass production and nutrient accumulation triggered by the inoculants and likely also by the microbiome shifts.</description><subject>Bacteria</subject><subject>Community composition</subject><subject>Ecology</subject><subject>Environmental aspects</subject><subject>Fungi</subject><subject>Growth</subject><subject>Microbial activity</subject><subject>Microbial colonies</subject><subject>Microbiology</subject><subject>Microbiomes</subject><subject>Microorganisms</subject><subject>Nutrient availability</subject><subject>Nutrients</subject><subject>Phosphorus in the body</subject><subject>Plant growth</subject><subject>Planting</subject><subject>Pseudomonas</subject><subject>Rhizosphere</subject><subject>rRNA 16S</subject><subject>Selective plating</subject><subject>Soil conditions</subject><subject>Soils</subject><subject>Solubilization</subject><subject>Tomatoes</subject><issn>1574-6941</issn><issn>0168-6496</issn><issn>1574-6941</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkctrFTEYxYMotlaXbiXgxs20ec1MsiylaqGgC12HTB53UmaSMQ-k_evN5ba2iiBZJCS_czj5DgBvMTrFSNAzZ9ds9Znzd5iwZ-AY9yPrBsHw8yfnI_Aq5xuEcE8ZegmOKKZ8wL04BuEyzCpoa2CJqyoRbosKBe5S_Flm6APM0S-wBmMTTNbUPfkV5rptyy0sc4p1N8PV6xQnr5YmiLruHTJUwTw8xNXCPHtX8mvwwqkl2zf3-wn4_vHy28Xn7vrLp6uL8-tOM4JLx8eRjghPk5gEdprRwXKMBqF6wVzPFOeaGUwRdgw5MnBk0OSYIYJgNhIx0BPw4eC7pfij2lzk6rO2S4tmY82SNJFgfT_Shr7_C72JNYWWThIqBOdtyuSR2qnFSh9cLEnpvak8H9AwcsFF36jTf1BtGdtGEYN1vt3_IegOgjannJN1ckt-VelWYiT3_cpDv_LQb-Pf3Yet02rNb_qh0MePx7r9x-sXFdmvAw</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Eltlbany, Namis</creator><creator>Baklawa, Mohamed</creator><creator>Ding, Guo-Chun</creator><creator>Nassal, Dinah</creator><creator>Weber, Nino</creator><creator>Kandeler, Ellen</creator><creator>Neumann, Günter</creator><creator>Ludewig, Uwe</creator><creator>van Overbeek, Leo</creator><creator>Smalla, Kornelia</creator><general>Oxford University Press</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20190901</creationdate><title>Enhanced tomato plant growth in soil under reduced P supply through microbial inoculants and microbiome shifts</title><author>Eltlbany, Namis ; Baklawa, Mohamed ; Ding, Guo-Chun ; Nassal, Dinah ; Weber, Nino ; Kandeler, Ellen ; Neumann, Günter ; Ludewig, Uwe ; van Overbeek, Leo ; Smalla, Kornelia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-8773701bb9b91fc436e81069a594f54a88c4d1301f40f2680d0bf4d2921472963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bacteria</topic><topic>Community composition</topic><topic>Ecology</topic><topic>Environmental aspects</topic><topic>Fungi</topic><topic>Growth</topic><topic>Microbial activity</topic><topic>Microbial colonies</topic><topic>Microbiology</topic><topic>Microbiomes</topic><topic>Microorganisms</topic><topic>Nutrient availability</topic><topic>Nutrients</topic><topic>Phosphorus in the body</topic><topic>Plant growth</topic><topic>Planting</topic><topic>Pseudomonas</topic><topic>Rhizosphere</topic><topic>rRNA 16S</topic><topic>Selective plating</topic><topic>Soil conditions</topic><topic>Soils</topic><topic>Solubilization</topic><topic>Tomatoes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eltlbany, Namis</creatorcontrib><creatorcontrib>Baklawa, Mohamed</creatorcontrib><creatorcontrib>Ding, Guo-Chun</creatorcontrib><creatorcontrib>Nassal, Dinah</creatorcontrib><creatorcontrib>Weber, Nino</creatorcontrib><creatorcontrib>Kandeler, Ellen</creatorcontrib><creatorcontrib>Neumann, Günter</creatorcontrib><creatorcontrib>Ludewig, Uwe</creatorcontrib><creatorcontrib>van Overbeek, Leo</creatorcontrib><creatorcontrib>Smalla, Kornelia</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>FEMS microbiology ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eltlbany, Namis</au><au>Baklawa, Mohamed</au><au>Ding, Guo-Chun</au><au>Nassal, Dinah</au><au>Weber, Nino</au><au>Kandeler, Ellen</au><au>Neumann, Günter</au><au>Ludewig, Uwe</au><au>van Overbeek, Leo</au><au>Smalla, Kornelia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced tomato plant growth in soil under reduced P supply through microbial inoculants and microbiome shifts</atitle><jtitle>FEMS microbiology ecology</jtitle><addtitle>FEMS Microbiol Ecol</addtitle><date>2019-09-01</date><risdate>2019</risdate><volume>95</volume><issue>9</issue><spage>1</spage><pages>1-</pages><issn>1574-6941</issn><issn>0168-6496</issn><eissn>1574-6941</eissn><abstract>ABSTRACT Soil microbial communities interact with roots, affecting plant growth and nutrient acquisition. In the present study, we aimed to decipher the effects of the inoculants Trichoderma harzianum T-22, Pseudomonas sp. DSMZ 13134, Bacillus amyloliquefaciens FZB42 or Pseudomonas sp. RU47 on the rhizosphere microbial community and their beneficial effects on tomato plants grown in moderately low phosphorous soil under greenhouse conditions. We analyzed the plant mass, inoculant colony forming units and rhizosphere communities on 15, 22, 29 and 43 days after sowing. Selective plating showed that the bacterial inoculants had a good rhizocompetence and accelerated shoot and root growth and nutrient accumulation. 16S rRNA gene fingerprints indicated changes in the rhizosphere bacterial community composition. Amplicon sequencing revealed that rhizosphere bacterial communities from plants treated with bacterial inoculants were more similar to each other and distinct from those of the control and the Trichoderma inoculated plants at harvest time, and numerous dynamic taxa were identified. In conclusion, likely both, inoculants and the rhizosphere microbiome shifts, stimulated early plant growth mainly by improved spatial acquisition of available nutrients via root growth promotion. At harvest, all tomato plants were P-deficient, suggesting a limited contribution of inoculants and the microbiome shifts to the solubilization of sparingly soluble soil P. Tomato plants inoculated with the bacterial strains showed a remarkably enhanced biomass production and nutrient accumulation triggered by the inoculants and likely also by the microbiome shifts.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>31386159</pmid><doi>10.1093/femsec/fiz124</doi></addata></record>
fulltext fulltext
identifier ISSN: 1574-6941
ispartof FEMS microbiology ecology, 2019-09, Vol.95 (9), p.1
issn 1574-6941
0168-6496
1574-6941
language eng
recordid cdi_proquest_miscellaneous_2268945573
source Oxford Journals Open Access Collection; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Bacteria
Community composition
Ecology
Environmental aspects
Fungi
Growth
Microbial activity
Microbial colonies
Microbiology
Microbiomes
Microorganisms
Nutrient availability
Nutrients
Phosphorus in the body
Plant growth
Planting
Pseudomonas
Rhizosphere
rRNA 16S
Selective plating
Soil conditions
Soils
Solubilization
Tomatoes
title Enhanced tomato plant growth in soil under reduced P supply through microbial inoculants and microbiome shifts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T01%3A59%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20tomato%20plant%20growth%20in%20soil%20under%20reduced%20P%20supply%20through%20microbial%20inoculants%20and%20microbiome%20shifts&rft.jtitle=FEMS%20microbiology%20ecology&rft.au=Eltlbany,%20Namis&rft.date=2019-09-01&rft.volume=95&rft.issue=9&rft.spage=1&rft.pages=1-&rft.issn=1574-6941&rft.eissn=1574-6941&rft_id=info:doi/10.1093/femsec/fiz124&rft_dat=%3Cgale_proqu%3EA606789895%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2399880932&rft_id=info:pmid/31386159&rft_galeid=A606789895&rft_oup_id=10.1093/femsec/fiz124&rfr_iscdi=true