Enhanced tomato plant growth in soil under reduced P supply through microbial inoculants and microbiome shifts
ABSTRACT Soil microbial communities interact with roots, affecting plant growth and nutrient acquisition. In the present study, we aimed to decipher the effects of the inoculants Trichoderma harzianum T-22, Pseudomonas sp. DSMZ 13134, Bacillus amyloliquefaciens FZB42 or Pseudomonas sp. RU47 on the r...
Gespeichert in:
Veröffentlicht in: | FEMS microbiology ecology 2019-09, Vol.95 (9), p.1 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 9 |
container_start_page | 1 |
container_title | FEMS microbiology ecology |
container_volume | 95 |
creator | Eltlbany, Namis Baklawa, Mohamed Ding, Guo-Chun Nassal, Dinah Weber, Nino Kandeler, Ellen Neumann, Günter Ludewig, Uwe van Overbeek, Leo Smalla, Kornelia |
description | ABSTRACT
Soil microbial communities interact with roots, affecting plant growth and nutrient acquisition. In the present study, we aimed to decipher the effects of the inoculants Trichoderma harzianum T-22, Pseudomonas sp. DSMZ 13134, Bacillus amyloliquefaciens FZB42 or Pseudomonas sp. RU47 on the rhizosphere microbial community and their beneficial effects on tomato plants grown in moderately low phosphorous soil under greenhouse conditions. We analyzed the plant mass, inoculant colony forming units and rhizosphere communities on 15, 22, 29 and 43 days after sowing. Selective plating showed that the bacterial inoculants had a good rhizocompetence and accelerated shoot and root growth and nutrient accumulation. 16S rRNA gene fingerprints indicated changes in the rhizosphere bacterial community composition. Amplicon sequencing revealed that rhizosphere bacterial communities from plants treated with bacterial inoculants were more similar to each other and distinct from those of the control and the Trichoderma inoculated plants at harvest time, and numerous dynamic taxa were identified. In conclusion, likely both, inoculants and the rhizosphere microbiome shifts, stimulated early plant growth mainly by improved spatial acquisition of available nutrients via root growth promotion. At harvest, all tomato plants were P-deficient, suggesting a limited contribution of inoculants and the microbiome shifts to the solubilization of sparingly soluble soil P.
Tomato plants inoculated with the bacterial strains showed a remarkably enhanced biomass production and nutrient accumulation triggered by the inoculants and likely also by the microbiome shifts. |
doi_str_mv | 10.1093/femsec/fiz124 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2268945573</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A606789895</galeid><oup_id>10.1093/femsec/fiz124</oup_id><sourcerecordid>A606789895</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-8773701bb9b91fc436e81069a594f54a88c4d1301f40f2680d0bf4d2921472963</originalsourceid><addsrcrecordid>eNqFkctrFTEYxYMotlaXbiXgxs20ec1MsiylaqGgC12HTB53UmaSMQ-k_evN5ba2iiBZJCS_czj5DgBvMTrFSNAzZ9ds9Znzd5iwZ-AY9yPrBsHw8yfnI_Aq5xuEcE8ZegmOKKZ8wL04BuEyzCpoa2CJqyoRbosKBe5S_Flm6APM0S-wBmMTTNbUPfkV5rptyy0sc4p1N8PV6xQnr5YmiLruHTJUwTw8xNXCPHtX8mvwwqkl2zf3-wn4_vHy28Xn7vrLp6uL8-tOM4JLx8eRjghPk5gEdprRwXKMBqF6wVzPFOeaGUwRdgw5MnBk0OSYIYJgNhIx0BPw4eC7pfij2lzk6rO2S4tmY82SNJFgfT_Shr7_C72JNYWWThIqBOdtyuSR2qnFSh9cLEnpvak8H9AwcsFF36jTf1BtGdtGEYN1vt3_IegOgjannJN1ckt-VelWYiT3_cpDv_LQb-Pf3Yet02rNb_qh0MePx7r9x-sXFdmvAw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2399880932</pqid></control><display><type>article</type><title>Enhanced tomato plant growth in soil under reduced P supply through microbial inoculants and microbiome shifts</title><source>Oxford Journals Open Access Collection</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Eltlbany, Namis ; Baklawa, Mohamed ; Ding, Guo-Chun ; Nassal, Dinah ; Weber, Nino ; Kandeler, Ellen ; Neumann, Günter ; Ludewig, Uwe ; van Overbeek, Leo ; Smalla, Kornelia</creator><creatorcontrib>Eltlbany, Namis ; Baklawa, Mohamed ; Ding, Guo-Chun ; Nassal, Dinah ; Weber, Nino ; Kandeler, Ellen ; Neumann, Günter ; Ludewig, Uwe ; van Overbeek, Leo ; Smalla, Kornelia</creatorcontrib><description>ABSTRACT
Soil microbial communities interact with roots, affecting plant growth and nutrient acquisition. In the present study, we aimed to decipher the effects of the inoculants Trichoderma harzianum T-22, Pseudomonas sp. DSMZ 13134, Bacillus amyloliquefaciens FZB42 or Pseudomonas sp. RU47 on the rhizosphere microbial community and their beneficial effects on tomato plants grown in moderately low phosphorous soil under greenhouse conditions. We analyzed the plant mass, inoculant colony forming units and rhizosphere communities on 15, 22, 29 and 43 days after sowing. Selective plating showed that the bacterial inoculants had a good rhizocompetence and accelerated shoot and root growth and nutrient accumulation. 16S rRNA gene fingerprints indicated changes in the rhizosphere bacterial community composition. Amplicon sequencing revealed that rhizosphere bacterial communities from plants treated with bacterial inoculants were more similar to each other and distinct from those of the control and the Trichoderma inoculated plants at harvest time, and numerous dynamic taxa were identified. In conclusion, likely both, inoculants and the rhizosphere microbiome shifts, stimulated early plant growth mainly by improved spatial acquisition of available nutrients via root growth promotion. At harvest, all tomato plants were P-deficient, suggesting a limited contribution of inoculants and the microbiome shifts to the solubilization of sparingly soluble soil P.
Tomato plants inoculated with the bacterial strains showed a remarkably enhanced biomass production and nutrient accumulation triggered by the inoculants and likely also by the microbiome shifts.</description><identifier>ISSN: 1574-6941</identifier><identifier>ISSN: 0168-6496</identifier><identifier>EISSN: 1574-6941</identifier><identifier>DOI: 10.1093/femsec/fiz124</identifier><identifier>PMID: 31386159</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Bacteria ; Community composition ; Ecology ; Environmental aspects ; Fungi ; Growth ; Microbial activity ; Microbial colonies ; Microbiology ; Microbiomes ; Microorganisms ; Nutrient availability ; Nutrients ; Phosphorus in the body ; Plant growth ; Planting ; Pseudomonas ; Rhizosphere ; rRNA 16S ; Selective plating ; Soil conditions ; Soils ; Solubilization ; Tomatoes</subject><ispartof>FEMS microbiology ecology, 2019-09, Vol.95 (9), p.1</ispartof><rights>FEMS 2019. 2019</rights><rights>FEMS 2019.</rights><rights>COPYRIGHT 2019 Oxford University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-8773701bb9b91fc436e81069a594f54a88c4d1301f40f2680d0bf4d2921472963</citedby><cites>FETCH-LOGICAL-c421t-8773701bb9b91fc436e81069a594f54a88c4d1301f40f2680d0bf4d2921472963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31386159$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Eltlbany, Namis</creatorcontrib><creatorcontrib>Baklawa, Mohamed</creatorcontrib><creatorcontrib>Ding, Guo-Chun</creatorcontrib><creatorcontrib>Nassal, Dinah</creatorcontrib><creatorcontrib>Weber, Nino</creatorcontrib><creatorcontrib>Kandeler, Ellen</creatorcontrib><creatorcontrib>Neumann, Günter</creatorcontrib><creatorcontrib>Ludewig, Uwe</creatorcontrib><creatorcontrib>van Overbeek, Leo</creatorcontrib><creatorcontrib>Smalla, Kornelia</creatorcontrib><title>Enhanced tomato plant growth in soil under reduced P supply through microbial inoculants and microbiome shifts</title><title>FEMS microbiology ecology</title><addtitle>FEMS Microbiol Ecol</addtitle><description>ABSTRACT
Soil microbial communities interact with roots, affecting plant growth and nutrient acquisition. In the present study, we aimed to decipher the effects of the inoculants Trichoderma harzianum T-22, Pseudomonas sp. DSMZ 13134, Bacillus amyloliquefaciens FZB42 or Pseudomonas sp. RU47 on the rhizosphere microbial community and their beneficial effects on tomato plants grown in moderately low phosphorous soil under greenhouse conditions. We analyzed the plant mass, inoculant colony forming units and rhizosphere communities on 15, 22, 29 and 43 days after sowing. Selective plating showed that the bacterial inoculants had a good rhizocompetence and accelerated shoot and root growth and nutrient accumulation. 16S rRNA gene fingerprints indicated changes in the rhizosphere bacterial community composition. Amplicon sequencing revealed that rhizosphere bacterial communities from plants treated with bacterial inoculants were more similar to each other and distinct from those of the control and the Trichoderma inoculated plants at harvest time, and numerous dynamic taxa were identified. In conclusion, likely both, inoculants and the rhizosphere microbiome shifts, stimulated early plant growth mainly by improved spatial acquisition of available nutrients via root growth promotion. At harvest, all tomato plants were P-deficient, suggesting a limited contribution of inoculants and the microbiome shifts to the solubilization of sparingly soluble soil P.
Tomato plants inoculated with the bacterial strains showed a remarkably enhanced biomass production and nutrient accumulation triggered by the inoculants and likely also by the microbiome shifts.</description><subject>Bacteria</subject><subject>Community composition</subject><subject>Ecology</subject><subject>Environmental aspects</subject><subject>Fungi</subject><subject>Growth</subject><subject>Microbial activity</subject><subject>Microbial colonies</subject><subject>Microbiology</subject><subject>Microbiomes</subject><subject>Microorganisms</subject><subject>Nutrient availability</subject><subject>Nutrients</subject><subject>Phosphorus in the body</subject><subject>Plant growth</subject><subject>Planting</subject><subject>Pseudomonas</subject><subject>Rhizosphere</subject><subject>rRNA 16S</subject><subject>Selective plating</subject><subject>Soil conditions</subject><subject>Soils</subject><subject>Solubilization</subject><subject>Tomatoes</subject><issn>1574-6941</issn><issn>0168-6496</issn><issn>1574-6941</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkctrFTEYxYMotlaXbiXgxs20ec1MsiylaqGgC12HTB53UmaSMQ-k_evN5ba2iiBZJCS_czj5DgBvMTrFSNAzZ9ds9Znzd5iwZ-AY9yPrBsHw8yfnI_Aq5xuEcE8ZegmOKKZ8wL04BuEyzCpoa2CJqyoRbosKBe5S_Flm6APM0S-wBmMTTNbUPfkV5rptyy0sc4p1N8PV6xQnr5YmiLruHTJUwTw8xNXCPHtX8mvwwqkl2zf3-wn4_vHy28Xn7vrLp6uL8-tOM4JLx8eRjghPk5gEdprRwXKMBqF6wVzPFOeaGUwRdgw5MnBk0OSYIYJgNhIx0BPw4eC7pfij2lzk6rO2S4tmY82SNJFgfT_Shr7_C72JNYWWThIqBOdtyuSR2qnFSh9cLEnpvak8H9AwcsFF36jTf1BtGdtGEYN1vt3_IegOgjannJN1ckt-VelWYiT3_cpDv_LQb-Pf3Yet02rNb_qh0MePx7r9x-sXFdmvAw</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Eltlbany, Namis</creator><creator>Baklawa, Mohamed</creator><creator>Ding, Guo-Chun</creator><creator>Nassal, Dinah</creator><creator>Weber, Nino</creator><creator>Kandeler, Ellen</creator><creator>Neumann, Günter</creator><creator>Ludewig, Uwe</creator><creator>van Overbeek, Leo</creator><creator>Smalla, Kornelia</creator><general>Oxford University Press</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20190901</creationdate><title>Enhanced tomato plant growth in soil under reduced P supply through microbial inoculants and microbiome shifts</title><author>Eltlbany, Namis ; Baklawa, Mohamed ; Ding, Guo-Chun ; Nassal, Dinah ; Weber, Nino ; Kandeler, Ellen ; Neumann, Günter ; Ludewig, Uwe ; van Overbeek, Leo ; Smalla, Kornelia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-8773701bb9b91fc436e81069a594f54a88c4d1301f40f2680d0bf4d2921472963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bacteria</topic><topic>Community composition</topic><topic>Ecology</topic><topic>Environmental aspects</topic><topic>Fungi</topic><topic>Growth</topic><topic>Microbial activity</topic><topic>Microbial colonies</topic><topic>Microbiology</topic><topic>Microbiomes</topic><topic>Microorganisms</topic><topic>Nutrient availability</topic><topic>Nutrients</topic><topic>Phosphorus in the body</topic><topic>Plant growth</topic><topic>Planting</topic><topic>Pseudomonas</topic><topic>Rhizosphere</topic><topic>rRNA 16S</topic><topic>Selective plating</topic><topic>Soil conditions</topic><topic>Soils</topic><topic>Solubilization</topic><topic>Tomatoes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eltlbany, Namis</creatorcontrib><creatorcontrib>Baklawa, Mohamed</creatorcontrib><creatorcontrib>Ding, Guo-Chun</creatorcontrib><creatorcontrib>Nassal, Dinah</creatorcontrib><creatorcontrib>Weber, Nino</creatorcontrib><creatorcontrib>Kandeler, Ellen</creatorcontrib><creatorcontrib>Neumann, Günter</creatorcontrib><creatorcontrib>Ludewig, Uwe</creatorcontrib><creatorcontrib>van Overbeek, Leo</creatorcontrib><creatorcontrib>Smalla, Kornelia</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>FEMS microbiology ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eltlbany, Namis</au><au>Baklawa, Mohamed</au><au>Ding, Guo-Chun</au><au>Nassal, Dinah</au><au>Weber, Nino</au><au>Kandeler, Ellen</au><au>Neumann, Günter</au><au>Ludewig, Uwe</au><au>van Overbeek, Leo</au><au>Smalla, Kornelia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced tomato plant growth in soil under reduced P supply through microbial inoculants and microbiome shifts</atitle><jtitle>FEMS microbiology ecology</jtitle><addtitle>FEMS Microbiol Ecol</addtitle><date>2019-09-01</date><risdate>2019</risdate><volume>95</volume><issue>9</issue><spage>1</spage><pages>1-</pages><issn>1574-6941</issn><issn>0168-6496</issn><eissn>1574-6941</eissn><abstract>ABSTRACT
Soil microbial communities interact with roots, affecting plant growth and nutrient acquisition. In the present study, we aimed to decipher the effects of the inoculants Trichoderma harzianum T-22, Pseudomonas sp. DSMZ 13134, Bacillus amyloliquefaciens FZB42 or Pseudomonas sp. RU47 on the rhizosphere microbial community and their beneficial effects on tomato plants grown in moderately low phosphorous soil under greenhouse conditions. We analyzed the plant mass, inoculant colony forming units and rhizosphere communities on 15, 22, 29 and 43 days after sowing. Selective plating showed that the bacterial inoculants had a good rhizocompetence and accelerated shoot and root growth and nutrient accumulation. 16S rRNA gene fingerprints indicated changes in the rhizosphere bacterial community composition. Amplicon sequencing revealed that rhizosphere bacterial communities from plants treated with bacterial inoculants were more similar to each other and distinct from those of the control and the Trichoderma inoculated plants at harvest time, and numerous dynamic taxa were identified. In conclusion, likely both, inoculants and the rhizosphere microbiome shifts, stimulated early plant growth mainly by improved spatial acquisition of available nutrients via root growth promotion. At harvest, all tomato plants were P-deficient, suggesting a limited contribution of inoculants and the microbiome shifts to the solubilization of sparingly soluble soil P.
Tomato plants inoculated with the bacterial strains showed a remarkably enhanced biomass production and nutrient accumulation triggered by the inoculants and likely also by the microbiome shifts.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>31386159</pmid><doi>10.1093/femsec/fiz124</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1574-6941 |
ispartof | FEMS microbiology ecology, 2019-09, Vol.95 (9), p.1 |
issn | 1574-6941 0168-6496 1574-6941 |
language | eng |
recordid | cdi_proquest_miscellaneous_2268945573 |
source | Oxford Journals Open Access Collection; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Bacteria Community composition Ecology Environmental aspects Fungi Growth Microbial activity Microbial colonies Microbiology Microbiomes Microorganisms Nutrient availability Nutrients Phosphorus in the body Plant growth Planting Pseudomonas Rhizosphere rRNA 16S Selective plating Soil conditions Soils Solubilization Tomatoes |
title | Enhanced tomato plant growth in soil under reduced P supply through microbial inoculants and microbiome shifts |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T01%3A59%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20tomato%20plant%20growth%20in%20soil%20under%20reduced%20P%20supply%20through%20microbial%20inoculants%20and%20microbiome%20shifts&rft.jtitle=FEMS%20microbiology%20ecology&rft.au=Eltlbany,%20Namis&rft.date=2019-09-01&rft.volume=95&rft.issue=9&rft.spage=1&rft.pages=1-&rft.issn=1574-6941&rft.eissn=1574-6941&rft_id=info:doi/10.1093/femsec/fiz124&rft_dat=%3Cgale_proqu%3EA606789895%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2399880932&rft_id=info:pmid/31386159&rft_galeid=A606789895&rft_oup_id=10.1093/femsec/fiz124&rfr_iscdi=true |