Capsid Structure of a Freshwater Cyanophage Siphoviridae Mic1
Cyanobacteria are the most abundant photosynthetic microorganisms, the global distribution of which is mainly regulated by the corresponding cyanophages. A systematic screening of water samples in the Lake Chaohu enabled us to isolate a freshwater siphocyanophage that infects Microcystis wesenbergii...
Gespeichert in:
Veröffentlicht in: | Structure (London) 2019-10, Vol.27 (10), p.1508-1516.e3 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1516.e3 |
---|---|
container_issue | 10 |
container_start_page | 1508 |
container_title | Structure (London) |
container_volume | 27 |
creator | Jin, Hua Jiang, Yong-Liang Yang, Feng Zhang, Jun-Tao Li, Wei-Fang Zhou, Ke Ju, Jue Chen, Yuxing Zhou, Cong-Zhao |
description | Cyanobacteria are the most abundant photosynthetic microorganisms, the global distribution of which is mainly regulated by the corresponding cyanophages. A systematic screening of water samples in the Lake Chaohu enabled us to isolate a freshwater siphocyanophage that infects Microcystis wesenbergii, thus termed Mic1. Using cryoelectron microscopy, we solved the 3.5-Å structure of Mic1 capsid. The major capsid protein gp40 of an HK97-like fold forms two types of capsomers, hexons and pentons. The capsomers interact with each other via the interweaved N-terminal arms of gp40 in addition to a tail-in-mouth joint along the three-fold symmetric axis, resulting in the assembly of capsid in a mortise-and-tenon pattern. The novel-fold cement protein gp47 sticks at the two-fold symmetric axis and further fixes the capsid. These findings provide structural insights into the assembly of cyanophages, and set up a platform to explore the mechanism of specific interactions and co-evolution with cyanobacteria.
[Display omitted]
•A new freshwater long-tailed cyanophage Mic1 was identified from Lake Chaohu•The capsid structure of Mic1 at 3.5-Å resolution was solved by cryo-EM•Mic1 capsid adopts a mortise-and-tenon assembly mechanism
The cryo-EM structure of a freshwater cyanophage Mic1 capsid reveals the structural variations of the major capsid protein and a novel fold of the cement protein, which enable the assembly of the icosahedral capsid via a mortise-and-tenon pattern. |
doi_str_mv | 10.1016/j.str.2019.07.003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2268574838</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0969212619302357</els_id><sourcerecordid>2268574838</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-416f74ea55d59f09ec1f8f48a98a7eb02a61ae66be6a5d10d4b986f1429626863</originalsourceid><addsrcrecordid>eNp9kLFOwzAURS0EoqXwASwoI0vCs-M4jhADiiggFTEUZstxnqmrtgl2UtS_J1WBkekt517ddwi5pJBQoOJmmYTOJwxokUCeAKRHZExlLmNOpTgmYyhEETPKxIichbAEAJYBnJJRStNc8oyOyV2p2-DqaN753nS9x6ixkY6mHsPiS3foo3KnN0270B8YzV27aLbOu1pj9OIMPScnVq8CXvzcCXmfPryVT_Hs9fG5vJ_FhgvWDXOEzTnqLKuzwkKBhlppudSF1DlWwLSgGoWoUOisplDzqpDCUs4KwYQU6YRcH3pb33z2GDq1dsHgaqU32PRBsYHKci5TOaD0gBrfhODRqta7tfY7RUHtramlGqypvTUFuRqsDZmrn_q-WmP9l_jVNAC3BwCHJ7cOvQrG4cZg7TyaTtWN-6f-GzmVfCs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2268574838</pqid></control><display><type>article</type><title>Capsid Structure of a Freshwater Cyanophage Siphoviridae Mic1</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Jin, Hua ; Jiang, Yong-Liang ; Yang, Feng ; Zhang, Jun-Tao ; Li, Wei-Fang ; Zhou, Ke ; Ju, Jue ; Chen, Yuxing ; Zhou, Cong-Zhao</creator><creatorcontrib>Jin, Hua ; Jiang, Yong-Liang ; Yang, Feng ; Zhang, Jun-Tao ; Li, Wei-Fang ; Zhou, Ke ; Ju, Jue ; Chen, Yuxing ; Zhou, Cong-Zhao</creatorcontrib><description>Cyanobacteria are the most abundant photosynthetic microorganisms, the global distribution of which is mainly regulated by the corresponding cyanophages. A systematic screening of water samples in the Lake Chaohu enabled us to isolate a freshwater siphocyanophage that infects Microcystis wesenbergii, thus termed Mic1. Using cryoelectron microscopy, we solved the 3.5-Å structure of Mic1 capsid. The major capsid protein gp40 of an HK97-like fold forms two types of capsomers, hexons and pentons. The capsomers interact with each other via the interweaved N-terminal arms of gp40 in addition to a tail-in-mouth joint along the three-fold symmetric axis, resulting in the assembly of capsid in a mortise-and-tenon pattern. The novel-fold cement protein gp47 sticks at the two-fold symmetric axis and further fixes the capsid. These findings provide structural insights into the assembly of cyanophages, and set up a platform to explore the mechanism of specific interactions and co-evolution with cyanobacteria.
[Display omitted]
•A new freshwater long-tailed cyanophage Mic1 was identified from Lake Chaohu•The capsid structure of Mic1 at 3.5-Å resolution was solved by cryo-EM•Mic1 capsid adopts a mortise-and-tenon assembly mechanism
The cryo-EM structure of a freshwater cyanophage Mic1 capsid reveals the structural variations of the major capsid protein and a novel fold of the cement protein, which enable the assembly of the icosahedral capsid via a mortise-and-tenon pattern.</description><identifier>ISSN: 0969-2126</identifier><identifier>EISSN: 1878-4186</identifier><identifier>DOI: 10.1016/j.str.2019.07.003</identifier><identifier>PMID: 31378451</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>capsid assembly ; Capsid Proteins - chemistry ; Capsid Proteins - metabolism ; cement protein ; cryo-EM structure ; Cryoelectron Microscopy ; cyanophage ; Microcystis - virology ; Models, Molecular ; Protein Conformation ; Protein Domains ; Protein Folding ; Protein Multimerization ; Siphoviridae - chemistry ; Siphoviridae - metabolism</subject><ispartof>Structure (London), 2019-10, Vol.27 (10), p.1508-1516.e3</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright © 2019 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-416f74ea55d59f09ec1f8f48a98a7eb02a61ae66be6a5d10d4b986f1429626863</citedby><cites>FETCH-LOGICAL-c462t-416f74ea55d59f09ec1f8f48a98a7eb02a61ae66be6a5d10d4b986f1429626863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.str.2019.07.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31378451$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jin, Hua</creatorcontrib><creatorcontrib>Jiang, Yong-Liang</creatorcontrib><creatorcontrib>Yang, Feng</creatorcontrib><creatorcontrib>Zhang, Jun-Tao</creatorcontrib><creatorcontrib>Li, Wei-Fang</creatorcontrib><creatorcontrib>Zhou, Ke</creatorcontrib><creatorcontrib>Ju, Jue</creatorcontrib><creatorcontrib>Chen, Yuxing</creatorcontrib><creatorcontrib>Zhou, Cong-Zhao</creatorcontrib><title>Capsid Structure of a Freshwater Cyanophage Siphoviridae Mic1</title><title>Structure (London)</title><addtitle>Structure</addtitle><description>Cyanobacteria are the most abundant photosynthetic microorganisms, the global distribution of which is mainly regulated by the corresponding cyanophages. A systematic screening of water samples in the Lake Chaohu enabled us to isolate a freshwater siphocyanophage that infects Microcystis wesenbergii, thus termed Mic1. Using cryoelectron microscopy, we solved the 3.5-Å structure of Mic1 capsid. The major capsid protein gp40 of an HK97-like fold forms two types of capsomers, hexons and pentons. The capsomers interact with each other via the interweaved N-terminal arms of gp40 in addition to a tail-in-mouth joint along the three-fold symmetric axis, resulting in the assembly of capsid in a mortise-and-tenon pattern. The novel-fold cement protein gp47 sticks at the two-fold symmetric axis and further fixes the capsid. These findings provide structural insights into the assembly of cyanophages, and set up a platform to explore the mechanism of specific interactions and co-evolution with cyanobacteria.
[Display omitted]
•A new freshwater long-tailed cyanophage Mic1 was identified from Lake Chaohu•The capsid structure of Mic1 at 3.5-Å resolution was solved by cryo-EM•Mic1 capsid adopts a mortise-and-tenon assembly mechanism
The cryo-EM structure of a freshwater cyanophage Mic1 capsid reveals the structural variations of the major capsid protein and a novel fold of the cement protein, which enable the assembly of the icosahedral capsid via a mortise-and-tenon pattern.</description><subject>capsid assembly</subject><subject>Capsid Proteins - chemistry</subject><subject>Capsid Proteins - metabolism</subject><subject>cement protein</subject><subject>cryo-EM structure</subject><subject>Cryoelectron Microscopy</subject><subject>cyanophage</subject><subject>Microcystis - virology</subject><subject>Models, Molecular</subject><subject>Protein Conformation</subject><subject>Protein Domains</subject><subject>Protein Folding</subject><subject>Protein Multimerization</subject><subject>Siphoviridae - chemistry</subject><subject>Siphoviridae - metabolism</subject><issn>0969-2126</issn><issn>1878-4186</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kLFOwzAURS0EoqXwASwoI0vCs-M4jhADiiggFTEUZstxnqmrtgl2UtS_J1WBkekt517ddwi5pJBQoOJmmYTOJwxokUCeAKRHZExlLmNOpTgmYyhEETPKxIichbAEAJYBnJJRStNc8oyOyV2p2-DqaN753nS9x6ixkY6mHsPiS3foo3KnN0270B8YzV27aLbOu1pj9OIMPScnVq8CXvzcCXmfPryVT_Hs9fG5vJ_FhgvWDXOEzTnqLKuzwkKBhlppudSF1DlWwLSgGoWoUOisplDzqpDCUs4KwYQU6YRcH3pb33z2GDq1dsHgaqU32PRBsYHKci5TOaD0gBrfhODRqta7tfY7RUHtramlGqypvTUFuRqsDZmrn_q-WmP9l_jVNAC3BwCHJ7cOvQrG4cZg7TyaTtWN-6f-GzmVfCs</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Jin, Hua</creator><creator>Jiang, Yong-Liang</creator><creator>Yang, Feng</creator><creator>Zhang, Jun-Tao</creator><creator>Li, Wei-Fang</creator><creator>Zhou, Ke</creator><creator>Ju, Jue</creator><creator>Chen, Yuxing</creator><creator>Zhou, Cong-Zhao</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20191001</creationdate><title>Capsid Structure of a Freshwater Cyanophage Siphoviridae Mic1</title><author>Jin, Hua ; Jiang, Yong-Liang ; Yang, Feng ; Zhang, Jun-Tao ; Li, Wei-Fang ; Zhou, Ke ; Ju, Jue ; Chen, Yuxing ; Zhou, Cong-Zhao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-416f74ea55d59f09ec1f8f48a98a7eb02a61ae66be6a5d10d4b986f1429626863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>capsid assembly</topic><topic>Capsid Proteins - chemistry</topic><topic>Capsid Proteins - metabolism</topic><topic>cement protein</topic><topic>cryo-EM structure</topic><topic>Cryoelectron Microscopy</topic><topic>cyanophage</topic><topic>Microcystis - virology</topic><topic>Models, Molecular</topic><topic>Protein Conformation</topic><topic>Protein Domains</topic><topic>Protein Folding</topic><topic>Protein Multimerization</topic><topic>Siphoviridae - chemistry</topic><topic>Siphoviridae - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jin, Hua</creatorcontrib><creatorcontrib>Jiang, Yong-Liang</creatorcontrib><creatorcontrib>Yang, Feng</creatorcontrib><creatorcontrib>Zhang, Jun-Tao</creatorcontrib><creatorcontrib>Li, Wei-Fang</creatorcontrib><creatorcontrib>Zhou, Ke</creatorcontrib><creatorcontrib>Ju, Jue</creatorcontrib><creatorcontrib>Chen, Yuxing</creatorcontrib><creatorcontrib>Zhou, Cong-Zhao</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Structure (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jin, Hua</au><au>Jiang, Yong-Liang</au><au>Yang, Feng</au><au>Zhang, Jun-Tao</au><au>Li, Wei-Fang</au><au>Zhou, Ke</au><au>Ju, Jue</au><au>Chen, Yuxing</au><au>Zhou, Cong-Zhao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Capsid Structure of a Freshwater Cyanophage Siphoviridae Mic1</atitle><jtitle>Structure (London)</jtitle><addtitle>Structure</addtitle><date>2019-10-01</date><risdate>2019</risdate><volume>27</volume><issue>10</issue><spage>1508</spage><epage>1516.e3</epage><pages>1508-1516.e3</pages><issn>0969-2126</issn><eissn>1878-4186</eissn><abstract>Cyanobacteria are the most abundant photosynthetic microorganisms, the global distribution of which is mainly regulated by the corresponding cyanophages. A systematic screening of water samples in the Lake Chaohu enabled us to isolate a freshwater siphocyanophage that infects Microcystis wesenbergii, thus termed Mic1. Using cryoelectron microscopy, we solved the 3.5-Å structure of Mic1 capsid. The major capsid protein gp40 of an HK97-like fold forms two types of capsomers, hexons and pentons. The capsomers interact with each other via the interweaved N-terminal arms of gp40 in addition to a tail-in-mouth joint along the three-fold symmetric axis, resulting in the assembly of capsid in a mortise-and-tenon pattern. The novel-fold cement protein gp47 sticks at the two-fold symmetric axis and further fixes the capsid. These findings provide structural insights into the assembly of cyanophages, and set up a platform to explore the mechanism of specific interactions and co-evolution with cyanobacteria.
[Display omitted]
•A new freshwater long-tailed cyanophage Mic1 was identified from Lake Chaohu•The capsid structure of Mic1 at 3.5-Å resolution was solved by cryo-EM•Mic1 capsid adopts a mortise-and-tenon assembly mechanism
The cryo-EM structure of a freshwater cyanophage Mic1 capsid reveals the structural variations of the major capsid protein and a novel fold of the cement protein, which enable the assembly of the icosahedral capsid via a mortise-and-tenon pattern.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>31378451</pmid><doi>10.1016/j.str.2019.07.003</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0969-2126 |
ispartof | Structure (London), 2019-10, Vol.27 (10), p.1508-1516.e3 |
issn | 0969-2126 1878-4186 |
language | eng |
recordid | cdi_proquest_miscellaneous_2268574838 |
source | MEDLINE; Cell Press Free Archives; Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry |
subjects | capsid assembly Capsid Proteins - chemistry Capsid Proteins - metabolism cement protein cryo-EM structure Cryoelectron Microscopy cyanophage Microcystis - virology Models, Molecular Protein Conformation Protein Domains Protein Folding Protein Multimerization Siphoviridae - chemistry Siphoviridae - metabolism |
title | Capsid Structure of a Freshwater Cyanophage Siphoviridae Mic1 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T15%3A45%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Capsid%20Structure%20of%20a%20Freshwater%20Cyanophage%20Siphoviridae%20Mic1&rft.jtitle=Structure%20(London)&rft.au=Jin,%20Hua&rft.date=2019-10-01&rft.volume=27&rft.issue=10&rft.spage=1508&rft.epage=1516.e3&rft.pages=1508-1516.e3&rft.issn=0969-2126&rft.eissn=1878-4186&rft_id=info:doi/10.1016/j.str.2019.07.003&rft_dat=%3Cproquest_cross%3E2268574838%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2268574838&rft_id=info:pmid/31378451&rft_els_id=S0969212619302357&rfr_iscdi=true |