Phase Behavior and Capillary Condensation Hysteresis of Carbon Dioxide in Mesopores

Carbon dioxide adsorption on micro- and mesoporous carbonaceous materials in a wide range of temperatures and pressures is of great importance for the problems of gas separations, greenhouse gas capture and sequestration, enhanced hydrocarbon recovery from shales and coals, as well as for the charac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2019-09, Vol.35 (35), p.11291-11298
Hauptverfasser: Dantas, Silvio, Struckhoff, Katie Cychosz, Thommes, Matthias, Neimark, Alexander V
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11298
container_issue 35
container_start_page 11291
container_title Langmuir
container_volume 35
creator Dantas, Silvio
Struckhoff, Katie Cychosz
Thommes, Matthias
Neimark, Alexander V
description Carbon dioxide adsorption on micro- and mesoporous carbonaceous materials in a wide range of temperatures and pressures is of great importance for the problems of gas separations, greenhouse gas capture and sequestration, enhanced hydrocarbon recovery from shales and coals, as well as for the characterization of nanoporous materials using CO2 as a molecular probe. We investigate the influence of temperature on CO2 adsorption focusing on the capillary condensation and hysteresis phenomena. We present experimental data on the adsorption of CO2 on CMK-3, ordered carbon with mesopores of ∼5–6 nm, at various temperatures (185–273 K) and pressures (up to 35 bars). Using Monte Carlo (MC) simulations in the grand canonical and mesocanonical ensembles, we attempt to predict the transition from reversible capillary condensation to hysteretic adsorption–desorption cycles that is experimentally observed with the decrease of temperature. We show that although the desorption at all temperatures occurs at the conditions of pore vapor-liquid equilibrium, the capillary condensation is a nucleation-driven process associated with an effective energy barrier of ∼43 kT, specific to the sample used in this work. This barrier can be overcome at the equilibrium conditions in the region of reversible condensation at temperatures higher than 240 K. At lower temperatures, the regime of developing hysteresis is observed with progressively widening hysteresis loops. The position of capillary condensation transition is estimated using the pressure dependence of the energy barrier calculated by the thermodynamic integration of the van der Waals-type continuous canonical isotherm simulated with the gauge cell MC method. These findings lay the foundation for developing kernels of CO2 adsorption and desorption isotherm for calculating the pore size distribution in the entire range of micropore and mesopore sizes from one high-pressure experimental isotherm.
doi_str_mv 10.1021/acs.langmuir.9b01748
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2268572676</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2268572676</sourcerecordid><originalsourceid>FETCH-LOGICAL-a385t-81254ea9049d381078f37ad35e7093d921696a1053696787d012888c3a7b841c3</originalsourceid><addsrcrecordid>eNp9kMlOwzAURS0EoqXwBwhlySbFU2JnCWEoEggkYG05sUNdJXawE0T_HldtWbJ60tO5bzgAnCM4RxCjK1mHeSvtZzcaPy8qiBjlB2CKMgzTjGN2CKaQUZIympMJOAlhBSEsCC2OwYQgwmFO-RS8vS5l0MmNXspv43wirUpK2Zu2lX6dlM4qbYMcjLPJYh0G7XUwIXFNhHwVm7fG_RilE2OTZx1c7yJwCo4a2QZ9tqsz8HF_914u0qeXh8fy-imVhGdDyhHOqJYFpIUiHEHGG8KkIplm8U5VYJQXuUQwI7EyzhREmHNeE8kqTlFNZuByO7f37mvUYRCdCbWOp1vtxiAwznnGcM7yiNItWnsXgteN6L3p4osCQbHRKaJOsdcpdjpj7GK3Yaw6rf5Ce38RgFtgE1-50dv48P8zfwH_bINS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2268572676</pqid></control><display><type>article</type><title>Phase Behavior and Capillary Condensation Hysteresis of Carbon Dioxide in Mesopores</title><source>ACS Publications</source><creator>Dantas, Silvio ; Struckhoff, Katie Cychosz ; Thommes, Matthias ; Neimark, Alexander V</creator><creatorcontrib>Dantas, Silvio ; Struckhoff, Katie Cychosz ; Thommes, Matthias ; Neimark, Alexander V</creatorcontrib><description>Carbon dioxide adsorption on micro- and mesoporous carbonaceous materials in a wide range of temperatures and pressures is of great importance for the problems of gas separations, greenhouse gas capture and sequestration, enhanced hydrocarbon recovery from shales and coals, as well as for the characterization of nanoporous materials using CO2 as a molecular probe. We investigate the influence of temperature on CO2 adsorption focusing on the capillary condensation and hysteresis phenomena. We present experimental data on the adsorption of CO2 on CMK-3, ordered carbon with mesopores of ∼5–6 nm, at various temperatures (185–273 K) and pressures (up to 35 bars). Using Monte Carlo (MC) simulations in the grand canonical and mesocanonical ensembles, we attempt to predict the transition from reversible capillary condensation to hysteretic adsorption–desorption cycles that is experimentally observed with the decrease of temperature. We show that although the desorption at all temperatures occurs at the conditions of pore vapor-liquid equilibrium, the capillary condensation is a nucleation-driven process associated with an effective energy barrier of ∼43 kT, specific to the sample used in this work. This barrier can be overcome at the equilibrium conditions in the region of reversible condensation at temperatures higher than 240 K. At lower temperatures, the regime of developing hysteresis is observed with progressively widening hysteresis loops. The position of capillary condensation transition is estimated using the pressure dependence of the energy barrier calculated by the thermodynamic integration of the van der Waals-type continuous canonical isotherm simulated with the gauge cell MC method. These findings lay the foundation for developing kernels of CO2 adsorption and desorption isotherm for calculating the pore size distribution in the entire range of micropore and mesopore sizes from one high-pressure experimental isotherm.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/acs.langmuir.9b01748</identifier><identifier>PMID: 31380648</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Langmuir, 2019-09, Vol.35 (35), p.11291-11298</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a385t-81254ea9049d381078f37ad35e7093d921696a1053696787d012888c3a7b841c3</citedby><cites>FETCH-LOGICAL-a385t-81254ea9049d381078f37ad35e7093d921696a1053696787d012888c3a7b841c3</cites><orcidid>0000-0002-3443-0389 ; 0000-0001-7168-4938</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.langmuir.9b01748$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.langmuir.9b01748$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31380648$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dantas, Silvio</creatorcontrib><creatorcontrib>Struckhoff, Katie Cychosz</creatorcontrib><creatorcontrib>Thommes, Matthias</creatorcontrib><creatorcontrib>Neimark, Alexander V</creatorcontrib><title>Phase Behavior and Capillary Condensation Hysteresis of Carbon Dioxide in Mesopores</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>Carbon dioxide adsorption on micro- and mesoporous carbonaceous materials in a wide range of temperatures and pressures is of great importance for the problems of gas separations, greenhouse gas capture and sequestration, enhanced hydrocarbon recovery from shales and coals, as well as for the characterization of nanoporous materials using CO2 as a molecular probe. We investigate the influence of temperature on CO2 adsorption focusing on the capillary condensation and hysteresis phenomena. We present experimental data on the adsorption of CO2 on CMK-3, ordered carbon with mesopores of ∼5–6 nm, at various temperatures (185–273 K) and pressures (up to 35 bars). Using Monte Carlo (MC) simulations in the grand canonical and mesocanonical ensembles, we attempt to predict the transition from reversible capillary condensation to hysteretic adsorption–desorption cycles that is experimentally observed with the decrease of temperature. We show that although the desorption at all temperatures occurs at the conditions of pore vapor-liquid equilibrium, the capillary condensation is a nucleation-driven process associated with an effective energy barrier of ∼43 kT, specific to the sample used in this work. This barrier can be overcome at the equilibrium conditions in the region of reversible condensation at temperatures higher than 240 K. At lower temperatures, the regime of developing hysteresis is observed with progressively widening hysteresis loops. The position of capillary condensation transition is estimated using the pressure dependence of the energy barrier calculated by the thermodynamic integration of the van der Waals-type continuous canonical isotherm simulated with the gauge cell MC method. These findings lay the foundation for developing kernels of CO2 adsorption and desorption isotherm for calculating the pore size distribution in the entire range of micropore and mesopore sizes from one high-pressure experimental isotherm.</description><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kMlOwzAURS0EoqXwBwhlySbFU2JnCWEoEggkYG05sUNdJXawE0T_HldtWbJ60tO5bzgAnCM4RxCjK1mHeSvtZzcaPy8qiBjlB2CKMgzTjGN2CKaQUZIympMJOAlhBSEsCC2OwYQgwmFO-RS8vS5l0MmNXspv43wirUpK2Zu2lX6dlM4qbYMcjLPJYh0G7XUwIXFNhHwVm7fG_RilE2OTZx1c7yJwCo4a2QZ9tqsz8HF_914u0qeXh8fy-imVhGdDyhHOqJYFpIUiHEHGG8KkIplm8U5VYJQXuUQwI7EyzhREmHNeE8kqTlFNZuByO7f37mvUYRCdCbWOp1vtxiAwznnGcM7yiNItWnsXgteN6L3p4osCQbHRKaJOsdcpdjpj7GK3Yaw6rf5Ce38RgFtgE1-50dv48P8zfwH_bINS</recordid><startdate>20190903</startdate><enddate>20190903</enddate><creator>Dantas, Silvio</creator><creator>Struckhoff, Katie Cychosz</creator><creator>Thommes, Matthias</creator><creator>Neimark, Alexander V</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3443-0389</orcidid><orcidid>https://orcid.org/0000-0001-7168-4938</orcidid></search><sort><creationdate>20190903</creationdate><title>Phase Behavior and Capillary Condensation Hysteresis of Carbon Dioxide in Mesopores</title><author>Dantas, Silvio ; Struckhoff, Katie Cychosz ; Thommes, Matthias ; Neimark, Alexander V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a385t-81254ea9049d381078f37ad35e7093d921696a1053696787d012888c3a7b841c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dantas, Silvio</creatorcontrib><creatorcontrib>Struckhoff, Katie Cychosz</creatorcontrib><creatorcontrib>Thommes, Matthias</creatorcontrib><creatorcontrib>Neimark, Alexander V</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dantas, Silvio</au><au>Struckhoff, Katie Cychosz</au><au>Thommes, Matthias</au><au>Neimark, Alexander V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase Behavior and Capillary Condensation Hysteresis of Carbon Dioxide in Mesopores</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2019-09-03</date><risdate>2019</risdate><volume>35</volume><issue>35</issue><spage>11291</spage><epage>11298</epage><pages>11291-11298</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><abstract>Carbon dioxide adsorption on micro- and mesoporous carbonaceous materials in a wide range of temperatures and pressures is of great importance for the problems of gas separations, greenhouse gas capture and sequestration, enhanced hydrocarbon recovery from shales and coals, as well as for the characterization of nanoporous materials using CO2 as a molecular probe. We investigate the influence of temperature on CO2 adsorption focusing on the capillary condensation and hysteresis phenomena. We present experimental data on the adsorption of CO2 on CMK-3, ordered carbon with mesopores of ∼5–6 nm, at various temperatures (185–273 K) and pressures (up to 35 bars). Using Monte Carlo (MC) simulations in the grand canonical and mesocanonical ensembles, we attempt to predict the transition from reversible capillary condensation to hysteretic adsorption–desorption cycles that is experimentally observed with the decrease of temperature. We show that although the desorption at all temperatures occurs at the conditions of pore vapor-liquid equilibrium, the capillary condensation is a nucleation-driven process associated with an effective energy barrier of ∼43 kT, specific to the sample used in this work. This barrier can be overcome at the equilibrium conditions in the region of reversible condensation at temperatures higher than 240 K. At lower temperatures, the regime of developing hysteresis is observed with progressively widening hysteresis loops. The position of capillary condensation transition is estimated using the pressure dependence of the energy barrier calculated by the thermodynamic integration of the van der Waals-type continuous canonical isotherm simulated with the gauge cell MC method. These findings lay the foundation for developing kernels of CO2 adsorption and desorption isotherm for calculating the pore size distribution in the entire range of micropore and mesopore sizes from one high-pressure experimental isotherm.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31380648</pmid><doi>10.1021/acs.langmuir.9b01748</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-3443-0389</orcidid><orcidid>https://orcid.org/0000-0001-7168-4938</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0743-7463
ispartof Langmuir, 2019-09, Vol.35 (35), p.11291-11298
issn 0743-7463
1520-5827
language eng
recordid cdi_proquest_miscellaneous_2268572676
source ACS Publications
title Phase Behavior and Capillary Condensation Hysteresis of Carbon Dioxide in Mesopores
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T16%3A32%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase%20Behavior%20and%20Capillary%20Condensation%20Hysteresis%20of%20Carbon%20Dioxide%20in%20Mesopores&rft.jtitle=Langmuir&rft.au=Dantas,%20Silvio&rft.date=2019-09-03&rft.volume=35&rft.issue=35&rft.spage=11291&rft.epage=11298&rft.pages=11291-11298&rft.issn=0743-7463&rft.eissn=1520-5827&rft_id=info:doi/10.1021/acs.langmuir.9b01748&rft_dat=%3Cproquest_cross%3E2268572676%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2268572676&rft_id=info:pmid/31380648&rfr_iscdi=true