A programmable neural virtual machine based on a fast store-erase learning rule
We present a neural architecture that uses a novel local learning rule to represent and execute arbitrary, symbolic programs written in a conventional assembly-like language. This Neural Virtual Machine (NVM) is purely neurocomputational but supports all of the key functionality of a traditional com...
Gespeichert in:
Veröffentlicht in: | Neural networks 2019-11, Vol.119, p.10-30 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 30 |
---|---|
container_issue | |
container_start_page | 10 |
container_title | Neural networks |
container_volume | 119 |
creator | Katz, Garrett E. Davis, Gregory P. Gentili, Rodolphe J. Reggia, James A. |
description | We present a neural architecture that uses a novel local learning rule to represent and execute arbitrary, symbolic programs written in a conventional assembly-like language. This Neural Virtual Machine (NVM) is purely neurocomputational but supports all of the key functionality of a traditional computer architecture. Unlike other programmable neural networks, the NVM uses principles such as fast non-iterative local learning, distributed representation of information, program-independent circuitry, itinerant attractor dynamics, and multiplicative gating for both activity and plasticity. We present the NVM in detail, theoretically analyze its properties, and conduct empirical computer experiments that quantify its performance and demonstrate that it works effectively. |
doi_str_mv | 10.1016/j.neunet.2019.07.017 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2268320248</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0893608019302059</els_id><sourcerecordid>2268320248</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-5baa9480ff61bdb7a025eb5d5717ba92770be3020a78096af9c63bd70582735b3</originalsourceid><addsrcrecordid>eNp9kE1L5jAQx4O46LPqNxDJ0UvrJGmT9CKI7LqC4GU9h0k71Tz0RZNW8NsbedSjp4Hh_zLzY-xUQClA6IttOdE60VJKEE0JpgRh9thGWNMU0li5zzZgG1VosHDIfqe0BQBtK3XADpVQRmtVb9j9FX-O82PEcUQ_EM-ZEQf-GuKy5jli-xQm4h4TdXyeOPIe08LTMkcqKOY1HwjjFKZHHteBjtmvHodEJ5_ziD38_fP_-l9xd39ze311V7QV2KWoPWJTWeh7LXznDYKsydddbYTx2EhjwJMCCWgsNBr7ptXKdwZqK42qvTpi57vcfP3LSmlxY0gtDQNONK_JSamtkiArm6XVTtrGOaVIvXuOYcT45gS4D5Ru63Yo3QdKB8ZllNl29tmw-pG6b9MXuyy43Ako__kaKLrUBppa6kKkdnHdHH5ueAdv9Yar</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2268320248</pqid></control><display><type>article</type><title>A programmable neural virtual machine based on a fast store-erase learning rule</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Katz, Garrett E. ; Davis, Gregory P. ; Gentili, Rodolphe J. ; Reggia, James A.</creator><creatorcontrib>Katz, Garrett E. ; Davis, Gregory P. ; Gentili, Rodolphe J. ; Reggia, James A.</creatorcontrib><description>We present a neural architecture that uses a novel local learning rule to represent and execute arbitrary, symbolic programs written in a conventional assembly-like language. This Neural Virtual Machine (NVM) is purely neurocomputational but supports all of the key functionality of a traditional computer architecture. Unlike other programmable neural networks, the NVM uses principles such as fast non-iterative local learning, distributed representation of information, program-independent circuitry, itinerant attractor dynamics, and multiplicative gating for both activity and plasticity. We present the NVM in detail, theoretically analyze its properties, and conduct empirical computer experiments that quantify its performance and demonstrate that it works effectively.</description><identifier>ISSN: 0893-6080</identifier><identifier>EISSN: 1879-2782</identifier><identifier>DOI: 10.1016/j.neunet.2019.07.017</identifier><identifier>PMID: 31376635</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Computers ; Humans ; Itinerant attractor dynamics ; Learning ; Local learning ; Machine Learning ; Multiplicative gating ; Neural Networks, Computer ; Programmable neural networks ; Symbolic processing</subject><ispartof>Neural networks, 2019-11, Vol.119, p.10-30</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright © 2019 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-5baa9480ff61bdb7a025eb5d5717ba92770be3020a78096af9c63bd70582735b3</citedby><cites>FETCH-LOGICAL-c408t-5baa9480ff61bdb7a025eb5d5717ba92770be3020a78096af9c63bd70582735b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neunet.2019.07.017$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31376635$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Katz, Garrett E.</creatorcontrib><creatorcontrib>Davis, Gregory P.</creatorcontrib><creatorcontrib>Gentili, Rodolphe J.</creatorcontrib><creatorcontrib>Reggia, James A.</creatorcontrib><title>A programmable neural virtual machine based on a fast store-erase learning rule</title><title>Neural networks</title><addtitle>Neural Netw</addtitle><description>We present a neural architecture that uses a novel local learning rule to represent and execute arbitrary, symbolic programs written in a conventional assembly-like language. This Neural Virtual Machine (NVM) is purely neurocomputational but supports all of the key functionality of a traditional computer architecture. Unlike other programmable neural networks, the NVM uses principles such as fast non-iterative local learning, distributed representation of information, program-independent circuitry, itinerant attractor dynamics, and multiplicative gating for both activity and plasticity. We present the NVM in detail, theoretically analyze its properties, and conduct empirical computer experiments that quantify its performance and demonstrate that it works effectively.</description><subject>Computers</subject><subject>Humans</subject><subject>Itinerant attractor dynamics</subject><subject>Learning</subject><subject>Local learning</subject><subject>Machine Learning</subject><subject>Multiplicative gating</subject><subject>Neural Networks, Computer</subject><subject>Programmable neural networks</subject><subject>Symbolic processing</subject><issn>0893-6080</issn><issn>1879-2782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1L5jAQx4O46LPqNxDJ0UvrJGmT9CKI7LqC4GU9h0k71Tz0RZNW8NsbedSjp4Hh_zLzY-xUQClA6IttOdE60VJKEE0JpgRh9thGWNMU0li5zzZgG1VosHDIfqe0BQBtK3XADpVQRmtVb9j9FX-O82PEcUQ_EM-ZEQf-GuKy5jli-xQm4h4TdXyeOPIe08LTMkcqKOY1HwjjFKZHHteBjtmvHodEJ5_ziD38_fP_-l9xd39ze311V7QV2KWoPWJTWeh7LXznDYKsydddbYTx2EhjwJMCCWgsNBr7ptXKdwZqK42qvTpi57vcfP3LSmlxY0gtDQNONK_JSamtkiArm6XVTtrGOaVIvXuOYcT45gS4D5Ru63Yo3QdKB8ZllNl29tmw-pG6b9MXuyy43Ako__kaKLrUBppa6kKkdnHdHH5ueAdv9Yar</recordid><startdate>201911</startdate><enddate>201911</enddate><creator>Katz, Garrett E.</creator><creator>Davis, Gregory P.</creator><creator>Gentili, Rodolphe J.</creator><creator>Reggia, James A.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201911</creationdate><title>A programmable neural virtual machine based on a fast store-erase learning rule</title><author>Katz, Garrett E. ; Davis, Gregory P. ; Gentili, Rodolphe J. ; Reggia, James A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-5baa9480ff61bdb7a025eb5d5717ba92770be3020a78096af9c63bd70582735b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Computers</topic><topic>Humans</topic><topic>Itinerant attractor dynamics</topic><topic>Learning</topic><topic>Local learning</topic><topic>Machine Learning</topic><topic>Multiplicative gating</topic><topic>Neural Networks, Computer</topic><topic>Programmable neural networks</topic><topic>Symbolic processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Katz, Garrett E.</creatorcontrib><creatorcontrib>Davis, Gregory P.</creatorcontrib><creatorcontrib>Gentili, Rodolphe J.</creatorcontrib><creatorcontrib>Reggia, James A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Neural networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Katz, Garrett E.</au><au>Davis, Gregory P.</au><au>Gentili, Rodolphe J.</au><au>Reggia, James A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A programmable neural virtual machine based on a fast store-erase learning rule</atitle><jtitle>Neural networks</jtitle><addtitle>Neural Netw</addtitle><date>2019-11</date><risdate>2019</risdate><volume>119</volume><spage>10</spage><epage>30</epage><pages>10-30</pages><issn>0893-6080</issn><eissn>1879-2782</eissn><abstract>We present a neural architecture that uses a novel local learning rule to represent and execute arbitrary, symbolic programs written in a conventional assembly-like language. This Neural Virtual Machine (NVM) is purely neurocomputational but supports all of the key functionality of a traditional computer architecture. Unlike other programmable neural networks, the NVM uses principles such as fast non-iterative local learning, distributed representation of information, program-independent circuitry, itinerant attractor dynamics, and multiplicative gating for both activity and plasticity. We present the NVM in detail, theoretically analyze its properties, and conduct empirical computer experiments that quantify its performance and demonstrate that it works effectively.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>31376635</pmid><doi>10.1016/j.neunet.2019.07.017</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0893-6080 |
ispartof | Neural networks, 2019-11, Vol.119, p.10-30 |
issn | 0893-6080 1879-2782 |
language | eng |
recordid | cdi_proquest_miscellaneous_2268320248 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present) |
subjects | Computers Humans Itinerant attractor dynamics Learning Local learning Machine Learning Multiplicative gating Neural Networks, Computer Programmable neural networks Symbolic processing |
title | A programmable neural virtual machine based on a fast store-erase learning rule |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T08%3A00%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20programmable%20neural%20virtual%20machine%20based%20on%20a%20fast%20store-erase%20learning%20rule&rft.jtitle=Neural%20networks&rft.au=Katz,%20Garrett%20E.&rft.date=2019-11&rft.volume=119&rft.spage=10&rft.epage=30&rft.pages=10-30&rft.issn=0893-6080&rft.eissn=1879-2782&rft_id=info:doi/10.1016/j.neunet.2019.07.017&rft_dat=%3Cproquest_cross%3E2268320248%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2268320248&rft_id=info:pmid/31376635&rft_els_id=S0893608019302059&rfr_iscdi=true |