Novel applications of modification of thiol enzymes and redox-regulated proteins using S-methyl methanethiosulfonate (MMTS)

S-Methyl methanethiosulfonate (MMTS) is used in experimental biochemistry for alkylating thiol groups of protein cysteines. Its applications include mainly trapping of natural thiol-disulfide states of redox-sensitive proteins and proteins which have undergone S-nitrosylation. The reagent can also b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochimica et biophysica acta. Proteins and proteomics 2019-11, Vol.1867 (11), p.140259-140259, Article 140259
Hauptverfasser: Makarov, Vladimir A., Tikhomirova, Natalia K., Savvateeva, Lyudmila V., Petushkova, Anastasiia I., Serebryakova, Marina V., Baksheeva, Viktoriia E., Gorokhovets, Neonila V., Zernii, Evgeni Yu, Zamyatnin, Andrey A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 140259
container_issue 11
container_start_page 140259
container_title Biochimica et biophysica acta. Proteins and proteomics
container_volume 1867
creator Makarov, Vladimir A.
Tikhomirova, Natalia K.
Savvateeva, Lyudmila V.
Petushkova, Anastasiia I.
Serebryakova, Marina V.
Baksheeva, Viktoriia E.
Gorokhovets, Neonila V.
Zernii, Evgeni Yu
Zamyatnin, Andrey A.
description S-Methyl methanethiosulfonate (MMTS) is used in experimental biochemistry for alkylating thiol groups of protein cysteines. Its applications include mainly trapping of natural thiol-disulfide states of redox-sensitive proteins and proteins which have undergone S-nitrosylation. The reagent can also be employed as an inhibitor of enzymatic activity, since nucleophilic cysteine thiolates are commonly present at active sites of various enzymes. The advantage of using MMTS for this purpose is the reversibility of the formation of methylthio mixed disulfides, compared to irreversible alkylation using conventional agents. Additional benefits include good accessibility of MMTS to buried protein cysteines due to its small size and the simplicity of the protection and deprotection procedures. In this study we report examples of MMTS application in experiments involving oxidoreductase (glyceraldehyde-3-phosphate dehydrogenase, GAPDH), redox-regulated protein (recoverin) and cysteine protease (triticain-α). We demonstrate that on the one hand MMTS can modify functional cysteines in the thiol enzyme GAPDH, thereby preventing thiol oxidation and reversibly inhibiting the enzyme, while on the other hand it can protect the redox-sensitive thiol group of recoverin from oxidation and such modification produces no impact on the activity of the protein. Furthermore, using the example of the papain-like enzyme triticain-α, we report a novel application of MMTS as a protector of the primary structure of active cysteine protease during long-term purification and refolding procedures. Based on the data, we propose new lines of MMTS employment in research, pharmaceuticals and biotechnology for reversible switching off of undesirable activity and antioxidant protection of proteins with functional thiol groups. •MMTS inhibits GAPDH by promoting disulfide bond formation involving catalytic cysteine.•MMTS protects redox state of recoverin without affecting its Ca2+-dependent activity.•MMTS protects triticain-α from autolysis during long-term purification and refolding.
doi_str_mv 10.1016/j.bbapap.2019.07.012
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2268307018</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1570963919301451</els_id><sourcerecordid>2268307018</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-3d91f714d3daff1c91892e6a5c818f0726299de027f6d2801dff13b96710e4213</originalsourceid><addsrcrecordid>eNp9kE1v1DAQhi0EoqXwDxDysRwS_JHYyQUJVaUg9ePQcra89rj1yomDnVQs_fN1tAvHnsa2nndm_CD0kZKaEiq-bOvNRk96qhmhfU1kTSh7hY5pJ7uKNm3zupxbSape8P4Ivct5SwgjUrZv0RGnXIqW8WP0dB0fIWA9TcEbPfs4ZhwdHqL17vCw3ucHHwOG8e9ugIz1aHECG_9UCe6XoGeweEpxBl_SS_bjPb6tBpgfdgGvRY-wNshLcHEsND69urq7_fwevXE6ZPhwqCfo1_fzu7Mf1eXNxc-zb5eV4YLNFbc9dZI2llvtHDU97XoGQremo50jkgnW9xYIk05Y1hFqC8U3vZCUQMMoP0Gn-75lx98L5FkNPhsIoewVl6wYEx0nktCuoM0eNSnmnMCpKflBp52iRK3a1VbttatVuyJSFe0l9ukwYdkMYP-H_nkuwNc9AOWfjx6SysbDaMD6BGZWNvqXJzwDW8GW-Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2268307018</pqid></control><display><type>article</type><title>Novel applications of modification of thiol enzymes and redox-regulated proteins using S-methyl methanethiosulfonate (MMTS)</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Makarov, Vladimir A. ; Tikhomirova, Natalia K. ; Savvateeva, Lyudmila V. ; Petushkova, Anastasiia I. ; Serebryakova, Marina V. ; Baksheeva, Viktoriia E. ; Gorokhovets, Neonila V. ; Zernii, Evgeni Yu ; Zamyatnin, Andrey A.</creator><creatorcontrib>Makarov, Vladimir A. ; Tikhomirova, Natalia K. ; Savvateeva, Lyudmila V. ; Petushkova, Anastasiia I. ; Serebryakova, Marina V. ; Baksheeva, Viktoriia E. ; Gorokhovets, Neonila V. ; Zernii, Evgeni Yu ; Zamyatnin, Andrey A.</creatorcontrib><description>S-Methyl methanethiosulfonate (MMTS) is used in experimental biochemistry for alkylating thiol groups of protein cysteines. Its applications include mainly trapping of natural thiol-disulfide states of redox-sensitive proteins and proteins which have undergone S-nitrosylation. The reagent can also be employed as an inhibitor of enzymatic activity, since nucleophilic cysteine thiolates are commonly present at active sites of various enzymes. The advantage of using MMTS for this purpose is the reversibility of the formation of methylthio mixed disulfides, compared to irreversible alkylation using conventional agents. Additional benefits include good accessibility of MMTS to buried protein cysteines due to its small size and the simplicity of the protection and deprotection procedures. In this study we report examples of MMTS application in experiments involving oxidoreductase (glyceraldehyde-3-phosphate dehydrogenase, GAPDH), redox-regulated protein (recoverin) and cysteine protease (triticain-α). We demonstrate that on the one hand MMTS can modify functional cysteines in the thiol enzyme GAPDH, thereby preventing thiol oxidation and reversibly inhibiting the enzyme, while on the other hand it can protect the redox-sensitive thiol group of recoverin from oxidation and such modification produces no impact on the activity of the protein. Furthermore, using the example of the papain-like enzyme triticain-α, we report a novel application of MMTS as a protector of the primary structure of active cysteine protease during long-term purification and refolding procedures. Based on the data, we propose new lines of MMTS employment in research, pharmaceuticals and biotechnology for reversible switching off of undesirable activity and antioxidant protection of proteins with functional thiol groups. •MMTS inhibits GAPDH by promoting disulfide bond formation involving catalytic cysteine.•MMTS protects redox state of recoverin without affecting its Ca2+-dependent activity.•MMTS protects triticain-α from autolysis during long-term purification and refolding.</description><identifier>ISSN: 1570-9639</identifier><identifier>EISSN: 1878-1454</identifier><identifier>DOI: 10.1016/j.bbapap.2019.07.012</identifier><identifier>PMID: 31376523</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Alkylation of cysteines ; Animals ; Cysteine proteases ; Cysteine Proteases - chemistry ; GADPH ; Glyceraldehyde-3-Phosphate Dehydrogenases - chemistry ; Humans ; Methyl Methanesulfonate - analogs &amp; derivatives ; Methyl Methanesulfonate - chemistry ; Oxidation-Reduction ; Plant Proteins - chemistry ; Rabbits ; Recoverin ; Recoverin - chemistry ; Redox-regulated proteins ; S-methyl methanethiosulfonate ; Sulfhydryl Compounds - chemistry ; Thiol enzymes ; Triticain-α ; Triticum - enzymology</subject><ispartof>Biochimica et biophysica acta. Proteins and proteomics, 2019-11, Vol.1867 (11), p.140259-140259, Article 140259</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright © 2019 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-3d91f714d3daff1c91892e6a5c818f0726299de027f6d2801dff13b96710e4213</citedby><cites>FETCH-LOGICAL-c362t-3d91f714d3daff1c91892e6a5c818f0726299de027f6d2801dff13b96710e4213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.bbapap.2019.07.012$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31376523$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Makarov, Vladimir A.</creatorcontrib><creatorcontrib>Tikhomirova, Natalia K.</creatorcontrib><creatorcontrib>Savvateeva, Lyudmila V.</creatorcontrib><creatorcontrib>Petushkova, Anastasiia I.</creatorcontrib><creatorcontrib>Serebryakova, Marina V.</creatorcontrib><creatorcontrib>Baksheeva, Viktoriia E.</creatorcontrib><creatorcontrib>Gorokhovets, Neonila V.</creatorcontrib><creatorcontrib>Zernii, Evgeni Yu</creatorcontrib><creatorcontrib>Zamyatnin, Andrey A.</creatorcontrib><title>Novel applications of modification of thiol enzymes and redox-regulated proteins using S-methyl methanethiosulfonate (MMTS)</title><title>Biochimica et biophysica acta. Proteins and proteomics</title><addtitle>Biochim Biophys Acta Proteins Proteom</addtitle><description>S-Methyl methanethiosulfonate (MMTS) is used in experimental biochemistry for alkylating thiol groups of protein cysteines. Its applications include mainly trapping of natural thiol-disulfide states of redox-sensitive proteins and proteins which have undergone S-nitrosylation. The reagent can also be employed as an inhibitor of enzymatic activity, since nucleophilic cysteine thiolates are commonly present at active sites of various enzymes. The advantage of using MMTS for this purpose is the reversibility of the formation of methylthio mixed disulfides, compared to irreversible alkylation using conventional agents. Additional benefits include good accessibility of MMTS to buried protein cysteines due to its small size and the simplicity of the protection and deprotection procedures. In this study we report examples of MMTS application in experiments involving oxidoreductase (glyceraldehyde-3-phosphate dehydrogenase, GAPDH), redox-regulated protein (recoverin) and cysteine protease (triticain-α). We demonstrate that on the one hand MMTS can modify functional cysteines in the thiol enzyme GAPDH, thereby preventing thiol oxidation and reversibly inhibiting the enzyme, while on the other hand it can protect the redox-sensitive thiol group of recoverin from oxidation and such modification produces no impact on the activity of the protein. Furthermore, using the example of the papain-like enzyme triticain-α, we report a novel application of MMTS as a protector of the primary structure of active cysteine protease during long-term purification and refolding procedures. Based on the data, we propose new lines of MMTS employment in research, pharmaceuticals and biotechnology for reversible switching off of undesirable activity and antioxidant protection of proteins with functional thiol groups. •MMTS inhibits GAPDH by promoting disulfide bond formation involving catalytic cysteine.•MMTS protects redox state of recoverin without affecting its Ca2+-dependent activity.•MMTS protects triticain-α from autolysis during long-term purification and refolding.</description><subject>Alkylation of cysteines</subject><subject>Animals</subject><subject>Cysteine proteases</subject><subject>Cysteine Proteases - chemistry</subject><subject>GADPH</subject><subject>Glyceraldehyde-3-Phosphate Dehydrogenases - chemistry</subject><subject>Humans</subject><subject>Methyl Methanesulfonate - analogs &amp; derivatives</subject><subject>Methyl Methanesulfonate - chemistry</subject><subject>Oxidation-Reduction</subject><subject>Plant Proteins - chemistry</subject><subject>Rabbits</subject><subject>Recoverin</subject><subject>Recoverin - chemistry</subject><subject>Redox-regulated proteins</subject><subject>S-methyl methanethiosulfonate</subject><subject>Sulfhydryl Compounds - chemistry</subject><subject>Thiol enzymes</subject><subject>Triticain-α</subject><subject>Triticum - enzymology</subject><issn>1570-9639</issn><issn>1878-1454</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1v1DAQhi0EoqXwDxDysRwS_JHYyQUJVaUg9ePQcra89rj1yomDnVQs_fN1tAvHnsa2nndm_CD0kZKaEiq-bOvNRk96qhmhfU1kTSh7hY5pJ7uKNm3zupxbSape8P4Ivct5SwgjUrZv0RGnXIqW8WP0dB0fIWA9TcEbPfs4ZhwdHqL17vCw3ucHHwOG8e9ugIz1aHECG_9UCe6XoGeweEpxBl_SS_bjPb6tBpgfdgGvRY-wNshLcHEsND69urq7_fwevXE6ZPhwqCfo1_fzu7Mf1eXNxc-zb5eV4YLNFbc9dZI2llvtHDU97XoGQremo50jkgnW9xYIk05Y1hFqC8U3vZCUQMMoP0Gn-75lx98L5FkNPhsIoewVl6wYEx0nktCuoM0eNSnmnMCpKflBp52iRK3a1VbttatVuyJSFe0l9ukwYdkMYP-H_nkuwNc9AOWfjx6SysbDaMD6BGZWNvqXJzwDW8GW-Q</recordid><startdate>201911</startdate><enddate>201911</enddate><creator>Makarov, Vladimir A.</creator><creator>Tikhomirova, Natalia K.</creator><creator>Savvateeva, Lyudmila V.</creator><creator>Petushkova, Anastasiia I.</creator><creator>Serebryakova, Marina V.</creator><creator>Baksheeva, Viktoriia E.</creator><creator>Gorokhovets, Neonila V.</creator><creator>Zernii, Evgeni Yu</creator><creator>Zamyatnin, Andrey A.</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201911</creationdate><title>Novel applications of modification of thiol enzymes and redox-regulated proteins using S-methyl methanethiosulfonate (MMTS)</title><author>Makarov, Vladimir A. ; Tikhomirova, Natalia K. ; Savvateeva, Lyudmila V. ; Petushkova, Anastasiia I. ; Serebryakova, Marina V. ; Baksheeva, Viktoriia E. ; Gorokhovets, Neonila V. ; Zernii, Evgeni Yu ; Zamyatnin, Andrey A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-3d91f714d3daff1c91892e6a5c818f0726299de027f6d2801dff13b96710e4213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alkylation of cysteines</topic><topic>Animals</topic><topic>Cysteine proteases</topic><topic>Cysteine Proteases - chemistry</topic><topic>GADPH</topic><topic>Glyceraldehyde-3-Phosphate Dehydrogenases - chemistry</topic><topic>Humans</topic><topic>Methyl Methanesulfonate - analogs &amp; derivatives</topic><topic>Methyl Methanesulfonate - chemistry</topic><topic>Oxidation-Reduction</topic><topic>Plant Proteins - chemistry</topic><topic>Rabbits</topic><topic>Recoverin</topic><topic>Recoverin - chemistry</topic><topic>Redox-regulated proteins</topic><topic>S-methyl methanethiosulfonate</topic><topic>Sulfhydryl Compounds - chemistry</topic><topic>Thiol enzymes</topic><topic>Triticain-α</topic><topic>Triticum - enzymology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Makarov, Vladimir A.</creatorcontrib><creatorcontrib>Tikhomirova, Natalia K.</creatorcontrib><creatorcontrib>Savvateeva, Lyudmila V.</creatorcontrib><creatorcontrib>Petushkova, Anastasiia I.</creatorcontrib><creatorcontrib>Serebryakova, Marina V.</creatorcontrib><creatorcontrib>Baksheeva, Viktoriia E.</creatorcontrib><creatorcontrib>Gorokhovets, Neonila V.</creatorcontrib><creatorcontrib>Zernii, Evgeni Yu</creatorcontrib><creatorcontrib>Zamyatnin, Andrey A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biochimica et biophysica acta. Proteins and proteomics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Makarov, Vladimir A.</au><au>Tikhomirova, Natalia K.</au><au>Savvateeva, Lyudmila V.</au><au>Petushkova, Anastasiia I.</au><au>Serebryakova, Marina V.</au><au>Baksheeva, Viktoriia E.</au><au>Gorokhovets, Neonila V.</au><au>Zernii, Evgeni Yu</au><au>Zamyatnin, Andrey A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel applications of modification of thiol enzymes and redox-regulated proteins using S-methyl methanethiosulfonate (MMTS)</atitle><jtitle>Biochimica et biophysica acta. Proteins and proteomics</jtitle><addtitle>Biochim Biophys Acta Proteins Proteom</addtitle><date>2019-11</date><risdate>2019</risdate><volume>1867</volume><issue>11</issue><spage>140259</spage><epage>140259</epage><pages>140259-140259</pages><artnum>140259</artnum><issn>1570-9639</issn><eissn>1878-1454</eissn><abstract>S-Methyl methanethiosulfonate (MMTS) is used in experimental biochemistry for alkylating thiol groups of protein cysteines. Its applications include mainly trapping of natural thiol-disulfide states of redox-sensitive proteins and proteins which have undergone S-nitrosylation. The reagent can also be employed as an inhibitor of enzymatic activity, since nucleophilic cysteine thiolates are commonly present at active sites of various enzymes. The advantage of using MMTS for this purpose is the reversibility of the formation of methylthio mixed disulfides, compared to irreversible alkylation using conventional agents. Additional benefits include good accessibility of MMTS to buried protein cysteines due to its small size and the simplicity of the protection and deprotection procedures. In this study we report examples of MMTS application in experiments involving oxidoreductase (glyceraldehyde-3-phosphate dehydrogenase, GAPDH), redox-regulated protein (recoverin) and cysteine protease (triticain-α). We demonstrate that on the one hand MMTS can modify functional cysteines in the thiol enzyme GAPDH, thereby preventing thiol oxidation and reversibly inhibiting the enzyme, while on the other hand it can protect the redox-sensitive thiol group of recoverin from oxidation and such modification produces no impact on the activity of the protein. Furthermore, using the example of the papain-like enzyme triticain-α, we report a novel application of MMTS as a protector of the primary structure of active cysteine protease during long-term purification and refolding procedures. Based on the data, we propose new lines of MMTS employment in research, pharmaceuticals and biotechnology for reversible switching off of undesirable activity and antioxidant protection of proteins with functional thiol groups. •MMTS inhibits GAPDH by promoting disulfide bond formation involving catalytic cysteine.•MMTS protects redox state of recoverin without affecting its Ca2+-dependent activity.•MMTS protects triticain-α from autolysis during long-term purification and refolding.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>31376523</pmid><doi>10.1016/j.bbapap.2019.07.012</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1570-9639
ispartof Biochimica et biophysica acta. Proteins and proteomics, 2019-11, Vol.1867 (11), p.140259-140259, Article 140259
issn 1570-9639
1878-1454
language eng
recordid cdi_proquest_miscellaneous_2268307018
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Alkylation of cysteines
Animals
Cysteine proteases
Cysteine Proteases - chemistry
GADPH
Glyceraldehyde-3-Phosphate Dehydrogenases - chemistry
Humans
Methyl Methanesulfonate - analogs & derivatives
Methyl Methanesulfonate - chemistry
Oxidation-Reduction
Plant Proteins - chemistry
Rabbits
Recoverin
Recoverin - chemistry
Redox-regulated proteins
S-methyl methanethiosulfonate
Sulfhydryl Compounds - chemistry
Thiol enzymes
Triticain-α
Triticum - enzymology
title Novel applications of modification of thiol enzymes and redox-regulated proteins using S-methyl methanethiosulfonate (MMTS)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T00%3A31%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20applications%20of%20modification%20of%20thiol%20enzymes%20and%20redox-regulated%20proteins%20using%20S-methyl%20methanethiosulfonate%20(MMTS)&rft.jtitle=Biochimica%20et%20biophysica%20acta.%20Proteins%20and%20proteomics&rft.au=Makarov,%20Vladimir%20A.&rft.date=2019-11&rft.volume=1867&rft.issue=11&rft.spage=140259&rft.epage=140259&rft.pages=140259-140259&rft.artnum=140259&rft.issn=1570-9639&rft.eissn=1878-1454&rft_id=info:doi/10.1016/j.bbapap.2019.07.012&rft_dat=%3Cproquest_cross%3E2268307018%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2268307018&rft_id=info:pmid/31376523&rft_els_id=S1570963919301451&rfr_iscdi=true