Analysis of how compliant layers and encapsulation affect power generated from piezoelectric stacked composites for bone healing medical devices
Use of piezoelectric materials to harvest energy from human motion is commonly investigated. Traditional piezoelectric materials are inefficient at low frequencies but composite structures can increase efficiency at these frequencies. Compliant layer adaptive composite stack (CLACS) is a new piezoel...
Gespeichert in:
Veröffentlicht in: | Journal of biomedical materials research. Part A 2019-12, Vol.107 (12), p.2610-2618 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2618 |
---|---|
container_issue | 12 |
container_start_page | 2610 |
container_title | Journal of biomedical materials research. Part A |
container_volume | 107 |
creator | Cadel, Eileen S. Frazer, Lance L. Krech, Ember D. Fischer, Kenneth J. Friis, Elizabeth A. |
description | Use of piezoelectric materials to harvest energy from human motion is commonly investigated. Traditional piezoelectric materials are inefficient at low frequencies but composite structures can increase efficiency at these frequencies. Compliant layer adaptive composite stack (CLACS) is a new piezoelectric PZT (lead zirconate titanate) structure designed for orthopedic implants to use loads generated during walking to provide electrical stimulation for bone healing. The CLACS structure increases power efficiency and structural properties as compared to PZT alone. The purpose of this study was to investigate the effects of compliant layer and encapsulation thicknesses on strain‐related parameters for CLACS predicted by finite element models. Percent changes in strain as compliant layer thickness increased were compared to percent changes in power experimentally produced by CLACS given similar geometries and loading conditions. Percent changes in PZT z‐strain matched the trends for increases in experimental power, but was not directly proportional. PZT z‐strain and radial strain increased as compliant layer and top and bottom encapsulation thickness increased. PZT z‐strain and radial strain decreased as side encapsulation thickness increased for a normalized distributed force on the PZT. The overall goal of this study was to inform future design decisions regarding CLACS structures specifically for use in orthopedic implants. |
doi_str_mv | 10.1002/jbm.a.36767 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2268306287</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2268306287</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3607-bd8985ca60584e5efca8a0ec6c0e0bfe6d75100bf26c954b8164a2bb8b9fb68c3</originalsourceid><addsrcrecordid>eNp90U1v1DAQBmALgWgpnLgjS1yQUBbHiR3nuK34VBEXOEdjZ9x6cexgJ6yWX8FPxssWDhw4eaR59Eqel5CnNdvUjPFXOz1tYNPITnb3yHktBK_aXor7x7ntq4b38ow8ynlXsGSCPyRnTd10sqnbc_JzG8Afsss0Wnob99TEafYOwkI9HDBlCmGkGAzMefWwuBgoWItmoXPcY6I3GDDBgiO1KU50dvgjoi_75AzNC5ivZXUMjdktmKmNieoYkN4ieBdu6ISjM-DpiN-dwfyYPLDgMz65ey_IlzevP1-9q64_vX1_tb2uTCNZV-lR9UoYKB9SLQq0BhQwNNIwZNqiHDtRrqMtl6YXrVa1bIFrrXRvtVSmuSAvTrlzit9WzMswuWzQewgY1zxwLlXDJFddoc__obu4pnK3ogqpixOsqJcnZVLMOaEd5uQmSIehZsOxqKEUNcDwu6iin91lrrpc4K_900wB_AT2zuPhf1nDh8uP21PqLzp3ock</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2306183050</pqid></control><display><type>article</type><title>Analysis of how compliant layers and encapsulation affect power generated from piezoelectric stacked composites for bone healing medical devices</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Cadel, Eileen S. ; Frazer, Lance L. ; Krech, Ember D. ; Fischer, Kenneth J. ; Friis, Elizabeth A.</creator><creatorcontrib>Cadel, Eileen S. ; Frazer, Lance L. ; Krech, Ember D. ; Fischer, Kenneth J. ; Friis, Elizabeth A.</creatorcontrib><description>Use of piezoelectric materials to harvest energy from human motion is commonly investigated. Traditional piezoelectric materials are inefficient at low frequencies but composite structures can increase efficiency at these frequencies. Compliant layer adaptive composite stack (CLACS) is a new piezoelectric PZT (lead zirconate titanate) structure designed for orthopedic implants to use loads generated during walking to provide electrical stimulation for bone healing. The CLACS structure increases power efficiency and structural properties as compared to PZT alone. The purpose of this study was to investigate the effects of compliant layer and encapsulation thicknesses on strain‐related parameters for CLACS predicted by finite element models. Percent changes in strain as compliant layer thickness increased were compared to percent changes in power experimentally produced by CLACS given similar geometries and loading conditions. Percent changes in PZT z‐strain matched the trends for increases in experimental power, but was not directly proportional. PZT z‐strain and radial strain increased as compliant layer and top and bottom encapsulation thickness increased. PZT z‐strain and radial strain decreased as side encapsulation thickness increased for a normalized distributed force on the PZT. The overall goal of this study was to inform future design decisions regarding CLACS structures specifically for use in orthopedic implants.</description><identifier>ISSN: 1549-3296</identifier><identifier>EISSN: 1552-4965</identifier><identifier>DOI: 10.1002/jbm.a.36767</identifier><identifier>PMID: 31376314</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Biocompatible Materials - chemistry ; Bone healing ; Composite structures ; Electric Power Supplies ; Electric Stimulation ; Electrical stimuli ; Encapsulation ; Energy harvesting ; Finite Element Analysis ; Finite element method ; Force distribution ; Healing ; Human motion ; human powered implants ; Humans ; Lead - chemistry ; Lead zirconate titanates ; low frequency ; Mathematical models ; Mechanical loading ; Medical devices ; Medical electronics ; Medical equipment ; Orthopaedic implants ; Orthopedics ; piezoelectric composite ; Piezoelectricity ; Power efficiency ; power generation ; Prostheses and Implants ; Stress concentration ; Surgical implants ; Thickness ; Titanium - chemistry ; Walking ; Wound Healing ; Zirconium - chemistry</subject><ispartof>Journal of biomedical materials research. Part A, 2019-12, Vol.107 (12), p.2610-2618</ispartof><rights>2019 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3607-bd8985ca60584e5efca8a0ec6c0e0bfe6d75100bf26c954b8164a2bb8b9fb68c3</citedby><cites>FETCH-LOGICAL-c3607-bd8985ca60584e5efca8a0ec6c0e0bfe6d75100bf26c954b8164a2bb8b9fb68c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjbm.a.36767$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjbm.a.36767$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31376314$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cadel, Eileen S.</creatorcontrib><creatorcontrib>Frazer, Lance L.</creatorcontrib><creatorcontrib>Krech, Ember D.</creatorcontrib><creatorcontrib>Fischer, Kenneth J.</creatorcontrib><creatorcontrib>Friis, Elizabeth A.</creatorcontrib><title>Analysis of how compliant layers and encapsulation affect power generated from piezoelectric stacked composites for bone healing medical devices</title><title>Journal of biomedical materials research. Part A</title><addtitle>J Biomed Mater Res A</addtitle><description>Use of piezoelectric materials to harvest energy from human motion is commonly investigated. Traditional piezoelectric materials are inefficient at low frequencies but composite structures can increase efficiency at these frequencies. Compliant layer adaptive composite stack (CLACS) is a new piezoelectric PZT (lead zirconate titanate) structure designed for orthopedic implants to use loads generated during walking to provide electrical stimulation for bone healing. The CLACS structure increases power efficiency and structural properties as compared to PZT alone. The purpose of this study was to investigate the effects of compliant layer and encapsulation thicknesses on strain‐related parameters for CLACS predicted by finite element models. Percent changes in strain as compliant layer thickness increased were compared to percent changes in power experimentally produced by CLACS given similar geometries and loading conditions. Percent changes in PZT z‐strain matched the trends for increases in experimental power, but was not directly proportional. PZT z‐strain and radial strain increased as compliant layer and top and bottom encapsulation thickness increased. PZT z‐strain and radial strain decreased as side encapsulation thickness increased for a normalized distributed force on the PZT. The overall goal of this study was to inform future design decisions regarding CLACS structures specifically for use in orthopedic implants.</description><subject>Biocompatible Materials - chemistry</subject><subject>Bone healing</subject><subject>Composite structures</subject><subject>Electric Power Supplies</subject><subject>Electric Stimulation</subject><subject>Electrical stimuli</subject><subject>Encapsulation</subject><subject>Energy harvesting</subject><subject>Finite Element Analysis</subject><subject>Finite element method</subject><subject>Force distribution</subject><subject>Healing</subject><subject>Human motion</subject><subject>human powered implants</subject><subject>Humans</subject><subject>Lead - chemistry</subject><subject>Lead zirconate titanates</subject><subject>low frequency</subject><subject>Mathematical models</subject><subject>Mechanical loading</subject><subject>Medical devices</subject><subject>Medical electronics</subject><subject>Medical equipment</subject><subject>Orthopaedic implants</subject><subject>Orthopedics</subject><subject>piezoelectric composite</subject><subject>Piezoelectricity</subject><subject>Power efficiency</subject><subject>power generation</subject><subject>Prostheses and Implants</subject><subject>Stress concentration</subject><subject>Surgical implants</subject><subject>Thickness</subject><subject>Titanium - chemistry</subject><subject>Walking</subject><subject>Wound Healing</subject><subject>Zirconium - chemistry</subject><issn>1549-3296</issn><issn>1552-4965</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90U1v1DAQBmALgWgpnLgjS1yQUBbHiR3nuK34VBEXOEdjZ9x6cexgJ6yWX8FPxssWDhw4eaR59Eqel5CnNdvUjPFXOz1tYNPITnb3yHktBK_aXor7x7ntq4b38ow8ynlXsGSCPyRnTd10sqnbc_JzG8Afsss0Wnob99TEafYOwkI9HDBlCmGkGAzMefWwuBgoWItmoXPcY6I3GDDBgiO1KU50dvgjoi_75AzNC5ivZXUMjdktmKmNieoYkN4ieBdu6ISjM-DpiN-dwfyYPLDgMz65ey_IlzevP1-9q64_vX1_tb2uTCNZV-lR9UoYKB9SLQq0BhQwNNIwZNqiHDtRrqMtl6YXrVa1bIFrrXRvtVSmuSAvTrlzit9WzMswuWzQewgY1zxwLlXDJFddoc__obu4pnK3ogqpixOsqJcnZVLMOaEd5uQmSIehZsOxqKEUNcDwu6iin91lrrpc4K_900wB_AT2zuPhf1nDh8uP21PqLzp3ock</recordid><startdate>201912</startdate><enddate>201912</enddate><creator>Cadel, Eileen S.</creator><creator>Frazer, Lance L.</creator><creator>Krech, Ember D.</creator><creator>Fischer, Kenneth J.</creator><creator>Friis, Elizabeth A.</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201912</creationdate><title>Analysis of how compliant layers and encapsulation affect power generated from piezoelectric stacked composites for bone healing medical devices</title><author>Cadel, Eileen S. ; Frazer, Lance L. ; Krech, Ember D. ; Fischer, Kenneth J. ; Friis, Elizabeth A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3607-bd8985ca60584e5efca8a0ec6c0e0bfe6d75100bf26c954b8164a2bb8b9fb68c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Biocompatible Materials - chemistry</topic><topic>Bone healing</topic><topic>Composite structures</topic><topic>Electric Power Supplies</topic><topic>Electric Stimulation</topic><topic>Electrical stimuli</topic><topic>Encapsulation</topic><topic>Energy harvesting</topic><topic>Finite Element Analysis</topic><topic>Finite element method</topic><topic>Force distribution</topic><topic>Healing</topic><topic>Human motion</topic><topic>human powered implants</topic><topic>Humans</topic><topic>Lead - chemistry</topic><topic>Lead zirconate titanates</topic><topic>low frequency</topic><topic>Mathematical models</topic><topic>Mechanical loading</topic><topic>Medical devices</topic><topic>Medical electronics</topic><topic>Medical equipment</topic><topic>Orthopaedic implants</topic><topic>Orthopedics</topic><topic>piezoelectric composite</topic><topic>Piezoelectricity</topic><topic>Power efficiency</topic><topic>power generation</topic><topic>Prostheses and Implants</topic><topic>Stress concentration</topic><topic>Surgical implants</topic><topic>Thickness</topic><topic>Titanium - chemistry</topic><topic>Walking</topic><topic>Wound Healing</topic><topic>Zirconium - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cadel, Eileen S.</creatorcontrib><creatorcontrib>Frazer, Lance L.</creatorcontrib><creatorcontrib>Krech, Ember D.</creatorcontrib><creatorcontrib>Fischer, Kenneth J.</creatorcontrib><creatorcontrib>Friis, Elizabeth A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomedical materials research. Part A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cadel, Eileen S.</au><au>Frazer, Lance L.</au><au>Krech, Ember D.</au><au>Fischer, Kenneth J.</au><au>Friis, Elizabeth A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of how compliant layers and encapsulation affect power generated from piezoelectric stacked composites for bone healing medical devices</atitle><jtitle>Journal of biomedical materials research. Part A</jtitle><addtitle>J Biomed Mater Res A</addtitle><date>2019-12</date><risdate>2019</risdate><volume>107</volume><issue>12</issue><spage>2610</spage><epage>2618</epage><pages>2610-2618</pages><issn>1549-3296</issn><eissn>1552-4965</eissn><abstract>Use of piezoelectric materials to harvest energy from human motion is commonly investigated. Traditional piezoelectric materials are inefficient at low frequencies but composite structures can increase efficiency at these frequencies. Compliant layer adaptive composite stack (CLACS) is a new piezoelectric PZT (lead zirconate titanate) structure designed for orthopedic implants to use loads generated during walking to provide electrical stimulation for bone healing. The CLACS structure increases power efficiency and structural properties as compared to PZT alone. The purpose of this study was to investigate the effects of compliant layer and encapsulation thicknesses on strain‐related parameters for CLACS predicted by finite element models. Percent changes in strain as compliant layer thickness increased were compared to percent changes in power experimentally produced by CLACS given similar geometries and loading conditions. Percent changes in PZT z‐strain matched the trends for increases in experimental power, but was not directly proportional. PZT z‐strain and radial strain increased as compliant layer and top and bottom encapsulation thickness increased. PZT z‐strain and radial strain decreased as side encapsulation thickness increased for a normalized distributed force on the PZT. The overall goal of this study was to inform future design decisions regarding CLACS structures specifically for use in orthopedic implants.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>31376314</pmid><doi>10.1002/jbm.a.36767</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-3296 |
ispartof | Journal of biomedical materials research. Part A, 2019-12, Vol.107 (12), p.2610-2618 |
issn | 1549-3296 1552-4965 |
language | eng |
recordid | cdi_proquest_miscellaneous_2268306287 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Biocompatible Materials - chemistry Bone healing Composite structures Electric Power Supplies Electric Stimulation Electrical stimuli Encapsulation Energy harvesting Finite Element Analysis Finite element method Force distribution Healing Human motion human powered implants Humans Lead - chemistry Lead zirconate titanates low frequency Mathematical models Mechanical loading Medical devices Medical electronics Medical equipment Orthopaedic implants Orthopedics piezoelectric composite Piezoelectricity Power efficiency power generation Prostheses and Implants Stress concentration Surgical implants Thickness Titanium - chemistry Walking Wound Healing Zirconium - chemistry |
title | Analysis of how compliant layers and encapsulation affect power generated from piezoelectric stacked composites for bone healing medical devices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T14%3A54%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20how%20compliant%20layers%20and%20encapsulation%20affect%20power%20generated%20from%20piezoelectric%20stacked%20composites%20for%20bone%20healing%20medical%20devices&rft.jtitle=Journal%20of%20biomedical%20materials%20research.%20Part%20A&rft.au=Cadel,%20Eileen%20S.&rft.date=2019-12&rft.volume=107&rft.issue=12&rft.spage=2610&rft.epage=2618&rft.pages=2610-2618&rft.issn=1549-3296&rft.eissn=1552-4965&rft_id=info:doi/10.1002/jbm.a.36767&rft_dat=%3Cproquest_cross%3E2268306287%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2306183050&rft_id=info:pmid/31376314&rfr_iscdi=true |