Approximation of the Eigenvalues of a Nonselfadjoint Operator Arising in the Study of the Stability of Stationary Solutions of the Navier-Stokes Equations

In this paper, rate of convergence estimates are established for the approximate calculation by the finite element method of the eigenvalues of the linearized operator which arises in the analysis of the stability of stationary solutions of the Navier-Stokes equations in a convex polygon.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on numerical analysis 1976-04, Vol.13 (2), p.185-197
1. Verfasser: Osborn, John E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 197
container_issue 2
container_start_page 185
container_title SIAM journal on numerical analysis
container_volume 13
creator Osborn, John E.
description In this paper, rate of convergence estimates are established for the approximate calculation by the finite element method of the eigenvalues of the linearized operator which arises in the analysis of the stability of stationary solutions of the Navier-Stokes equations in a convex polygon.
doi_str_mv 10.1137/0713019
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_22678519</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2156086</jstor_id><sourcerecordid>2156086</sourcerecordid><originalsourceid>FETCH-LOGICAL-c217t-59083f95f05a858fbdabe998992fb404b33e654b25ab4bc6b6c3fbcc23ede0fa3</originalsourceid><addsrcrecordid>eNpdkbtOwzAUhi0EEqUgXoAhYoAp4EucxGNVlYtUtUNgjuzELi5p3NpORV-Fp8VpKQPTueg7t_8AcI3gA0Ike4QZIhCxEzBAkNE4Qxk8BQMISRqjBLNzcOHcEoY4R2QAvkfrtTVfesW9Nm1kVOQ_ZDTRC9luedNJ16d4NDOtk43i9dLo1kfztbTcGxuNrHa6XUS63dcVvqt3xyaF50I32u8TIegHcLuLCtN0ve-O4IxvtbRx4c1nmDfZdHvUXYIzxRsnr37tELw_Td7GL_F0_vw6Hk3jCqPMx5TBnChGFaQ8p7kSNReSsZwxrEQCE0GITGkiMOUiEVUq0oooUVWYyFpCxckQ3B36BiE24WJfrrSrZNPwVprOlRinWU4RC-DtP3BpOtuG3UqGSUoYhjRA9weossY5K1W5tkFduysRLPsHlb8PCuTNgVy6IOUfhhFNYZ6SHyT5jpw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>923639205</pqid></control><display><type>article</type><title>Approximation of the Eigenvalues of a Nonselfadjoint Operator Arising in the Study of the Stability of Stationary Solutions of the Navier-Stokes Equations</title><source>SIAM Journals Online</source><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Osborn, John E.</creator><creatorcontrib>Osborn, John E.</creatorcontrib><description>In this paper, rate of convergence estimates are established for the approximate calculation by the finite element method of the eigenvalues of the linearized operator which arises in the analysis of the stability of stationary solutions of the Navier-Stokes equations in a convex polygon.</description><identifier>ISSN: 0036-1429</identifier><identifier>EISSN: 1095-7170</identifier><identifier>DOI: 10.1137/0713019</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Algebra ; Approximation ; Eigenvalues ; Eigenvectors ; Finite element analysis ; Finite element method ; Hilbert space ; Mathematics ; Navier Stokes equation ; Navier-Stokes equations ; Polygons ; Spectral theory ; Vector valued functions</subject><ispartof>SIAM journal on numerical analysis, 1976-04, Vol.13 (2), p.185-197</ispartof><rights>Copyright 1976 Society for Industrial and Applied Mathematics</rights><rights>[Copyright] © 1976 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c217t-59083f95f05a858fbdabe998992fb404b33e654b25ab4bc6b6c3fbcc23ede0fa3</citedby><cites>FETCH-LOGICAL-c217t-59083f95f05a858fbdabe998992fb404b33e654b25ab4bc6b6c3fbcc23ede0fa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2156086$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2156086$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,3182,27922,27923,58015,58019,58248,58252</link.rule.ids></links><search><creatorcontrib>Osborn, John E.</creatorcontrib><title>Approximation of the Eigenvalues of a Nonselfadjoint Operator Arising in the Study of the Stability of Stationary Solutions of the Navier-Stokes Equations</title><title>SIAM journal on numerical analysis</title><description>In this paper, rate of convergence estimates are established for the approximate calculation by the finite element method of the eigenvalues of the linearized operator which arises in the analysis of the stability of stationary solutions of the Navier-Stokes equations in a convex polygon.</description><subject>Algebra</subject><subject>Approximation</subject><subject>Eigenvalues</subject><subject>Eigenvectors</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Hilbert space</subject><subject>Mathematics</subject><subject>Navier Stokes equation</subject><subject>Navier-Stokes equations</subject><subject>Polygons</subject><subject>Spectral theory</subject><subject>Vector valued functions</subject><issn>0036-1429</issn><issn>1095-7170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1976</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkbtOwzAUhi0EEqUgXoAhYoAp4EucxGNVlYtUtUNgjuzELi5p3NpORV-Fp8VpKQPTueg7t_8AcI3gA0Ike4QZIhCxEzBAkNE4Qxk8BQMISRqjBLNzcOHcEoY4R2QAvkfrtTVfesW9Nm1kVOQ_ZDTRC9luedNJ16d4NDOtk43i9dLo1kfztbTcGxuNrHa6XUS63dcVvqt3xyaF50I32u8TIegHcLuLCtN0ve-O4IxvtbRx4c1nmDfZdHvUXYIzxRsnr37tELw_Td7GL_F0_vw6Hk3jCqPMx5TBnChGFaQ8p7kSNReSsZwxrEQCE0GITGkiMOUiEVUq0oooUVWYyFpCxckQ3B36BiE24WJfrrSrZNPwVprOlRinWU4RC-DtP3BpOtuG3UqGSUoYhjRA9weossY5K1W5tkFduysRLPsHlb8PCuTNgVy6IOUfhhFNYZ6SHyT5jpw</recordid><startdate>19760401</startdate><enddate>19760401</enddate><creator>Osborn, John E.</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>19760401</creationdate><title>Approximation of the Eigenvalues of a Nonselfadjoint Operator Arising in the Study of the Stability of Stationary Solutions of the Navier-Stokes Equations</title><author>Osborn, John E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c217t-59083f95f05a858fbdabe998992fb404b33e654b25ab4bc6b6c3fbcc23ede0fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1976</creationdate><topic>Algebra</topic><topic>Approximation</topic><topic>Eigenvalues</topic><topic>Eigenvectors</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Hilbert space</topic><topic>Mathematics</topic><topic>Navier Stokes equation</topic><topic>Navier-Stokes equations</topic><topic>Polygons</topic><topic>Spectral theory</topic><topic>Vector valued functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Osborn, John E.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>SIAM journal on numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Osborn, John E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approximation of the Eigenvalues of a Nonselfadjoint Operator Arising in the Study of the Stability of Stationary Solutions of the Navier-Stokes Equations</atitle><jtitle>SIAM journal on numerical analysis</jtitle><date>1976-04-01</date><risdate>1976</risdate><volume>13</volume><issue>2</issue><spage>185</spage><epage>197</epage><pages>185-197</pages><issn>0036-1429</issn><eissn>1095-7170</eissn><abstract>In this paper, rate of convergence estimates are established for the approximate calculation by the finite element method of the eigenvalues of the linearized operator which arises in the analysis of the stability of stationary solutions of the Navier-Stokes equations in a convex polygon.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/0713019</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-1429
ispartof SIAM journal on numerical analysis, 1976-04, Vol.13 (2), p.185-197
issn 0036-1429
1095-7170
language eng
recordid cdi_proquest_miscellaneous_22678519
source SIAM Journals Online; JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing
subjects Algebra
Approximation
Eigenvalues
Eigenvectors
Finite element analysis
Finite element method
Hilbert space
Mathematics
Navier Stokes equation
Navier-Stokes equations
Polygons
Spectral theory
Vector valued functions
title Approximation of the Eigenvalues of a Nonselfadjoint Operator Arising in the Study of the Stability of Stationary Solutions of the Navier-Stokes Equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T17%3A42%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approximation%20of%20the%20Eigenvalues%20of%20a%20Nonselfadjoint%20Operator%20Arising%20in%20the%20Study%20of%20the%20Stability%20of%20Stationary%20Solutions%20of%20the%20Navier-Stokes%20Equations&rft.jtitle=SIAM%20journal%20on%20numerical%20analysis&rft.au=Osborn,%20John%20E.&rft.date=1976-04-01&rft.volume=13&rft.issue=2&rft.spage=185&rft.epage=197&rft.pages=185-197&rft.issn=0036-1429&rft.eissn=1095-7170&rft_id=info:doi/10.1137/0713019&rft_dat=%3Cjstor_proqu%3E2156086%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=923639205&rft_id=info:pmid/&rft_jstor_id=2156086&rfr_iscdi=true