Approximation of the Eigenvalues of a Nonselfadjoint Operator Arising in the Study of the Stability of Stationary Solutions of the Navier-Stokes Equations
In this paper, rate of convergence estimates are established for the approximate calculation by the finite element method of the eigenvalues of the linearized operator which arises in the analysis of the stability of stationary solutions of the Navier-Stokes equations in a convex polygon.
Gespeichert in:
Veröffentlicht in: | SIAM journal on numerical analysis 1976-04, Vol.13 (2), p.185-197 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 197 |
---|---|
container_issue | 2 |
container_start_page | 185 |
container_title | SIAM journal on numerical analysis |
container_volume | 13 |
creator | Osborn, John E. |
description | In this paper, rate of convergence estimates are established for the approximate calculation by the finite element method of the eigenvalues of the linearized operator which arises in the analysis of the stability of stationary solutions of the Navier-Stokes equations in a convex polygon. |
doi_str_mv | 10.1137/0713019 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_22678519</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2156086</jstor_id><sourcerecordid>2156086</sourcerecordid><originalsourceid>FETCH-LOGICAL-c217t-59083f95f05a858fbdabe998992fb404b33e654b25ab4bc6b6c3fbcc23ede0fa3</originalsourceid><addsrcrecordid>eNpdkbtOwzAUhi0EEqUgXoAhYoAp4EucxGNVlYtUtUNgjuzELi5p3NpORV-Fp8VpKQPTueg7t_8AcI3gA0Ike4QZIhCxEzBAkNE4Qxk8BQMISRqjBLNzcOHcEoY4R2QAvkfrtTVfesW9Nm1kVOQ_ZDTRC9luedNJ16d4NDOtk43i9dLo1kfztbTcGxuNrHa6XUS63dcVvqt3xyaF50I32u8TIegHcLuLCtN0ve-O4IxvtbRx4c1nmDfZdHvUXYIzxRsnr37tELw_Td7GL_F0_vw6Hk3jCqPMx5TBnChGFaQ8p7kSNReSsZwxrEQCE0GITGkiMOUiEVUq0oooUVWYyFpCxckQ3B36BiE24WJfrrSrZNPwVprOlRinWU4RC-DtP3BpOtuG3UqGSUoYhjRA9weossY5K1W5tkFduysRLPsHlb8PCuTNgVy6IOUfhhFNYZ6SHyT5jpw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>923639205</pqid></control><display><type>article</type><title>Approximation of the Eigenvalues of a Nonselfadjoint Operator Arising in the Study of the Stability of Stationary Solutions of the Navier-Stokes Equations</title><source>SIAM Journals Online</source><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Osborn, John E.</creator><creatorcontrib>Osborn, John E.</creatorcontrib><description>In this paper, rate of convergence estimates are established for the approximate calculation by the finite element method of the eigenvalues of the linearized operator which arises in the analysis of the stability of stationary solutions of the Navier-Stokes equations in a convex polygon.</description><identifier>ISSN: 0036-1429</identifier><identifier>EISSN: 1095-7170</identifier><identifier>DOI: 10.1137/0713019</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Algebra ; Approximation ; Eigenvalues ; Eigenvectors ; Finite element analysis ; Finite element method ; Hilbert space ; Mathematics ; Navier Stokes equation ; Navier-Stokes equations ; Polygons ; Spectral theory ; Vector valued functions</subject><ispartof>SIAM journal on numerical analysis, 1976-04, Vol.13 (2), p.185-197</ispartof><rights>Copyright 1976 Society for Industrial and Applied Mathematics</rights><rights>[Copyright] © 1976 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c217t-59083f95f05a858fbdabe998992fb404b33e654b25ab4bc6b6c3fbcc23ede0fa3</citedby><cites>FETCH-LOGICAL-c217t-59083f95f05a858fbdabe998992fb404b33e654b25ab4bc6b6c3fbcc23ede0fa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2156086$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2156086$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,3182,27922,27923,58015,58019,58248,58252</link.rule.ids></links><search><creatorcontrib>Osborn, John E.</creatorcontrib><title>Approximation of the Eigenvalues of a Nonselfadjoint Operator Arising in the Study of the Stability of Stationary Solutions of the Navier-Stokes Equations</title><title>SIAM journal on numerical analysis</title><description>In this paper, rate of convergence estimates are established for the approximate calculation by the finite element method of the eigenvalues of the linearized operator which arises in the analysis of the stability of stationary solutions of the Navier-Stokes equations in a convex polygon.</description><subject>Algebra</subject><subject>Approximation</subject><subject>Eigenvalues</subject><subject>Eigenvectors</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Hilbert space</subject><subject>Mathematics</subject><subject>Navier Stokes equation</subject><subject>Navier-Stokes equations</subject><subject>Polygons</subject><subject>Spectral theory</subject><subject>Vector valued functions</subject><issn>0036-1429</issn><issn>1095-7170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1976</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkbtOwzAUhi0EEqUgXoAhYoAp4EucxGNVlYtUtUNgjuzELi5p3NpORV-Fp8VpKQPTueg7t_8AcI3gA0Ike4QZIhCxEzBAkNE4Qxk8BQMISRqjBLNzcOHcEoY4R2QAvkfrtTVfesW9Nm1kVOQ_ZDTRC9luedNJ16d4NDOtk43i9dLo1kfztbTcGxuNrHa6XUS63dcVvqt3xyaF50I32u8TIegHcLuLCtN0ve-O4IxvtbRx4c1nmDfZdHvUXYIzxRsnr37tELw_Td7GL_F0_vw6Hk3jCqPMx5TBnChGFaQ8p7kSNReSsZwxrEQCE0GITGkiMOUiEVUq0oooUVWYyFpCxckQ3B36BiE24WJfrrSrZNPwVprOlRinWU4RC-DtP3BpOtuG3UqGSUoYhjRA9weossY5K1W5tkFduysRLPsHlb8PCuTNgVy6IOUfhhFNYZ6SHyT5jpw</recordid><startdate>19760401</startdate><enddate>19760401</enddate><creator>Osborn, John E.</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>19760401</creationdate><title>Approximation of the Eigenvalues of a Nonselfadjoint Operator Arising in the Study of the Stability of Stationary Solutions of the Navier-Stokes Equations</title><author>Osborn, John E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c217t-59083f95f05a858fbdabe998992fb404b33e654b25ab4bc6b6c3fbcc23ede0fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1976</creationdate><topic>Algebra</topic><topic>Approximation</topic><topic>Eigenvalues</topic><topic>Eigenvectors</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Hilbert space</topic><topic>Mathematics</topic><topic>Navier Stokes equation</topic><topic>Navier-Stokes equations</topic><topic>Polygons</topic><topic>Spectral theory</topic><topic>Vector valued functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Osborn, John E.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>SIAM journal on numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Osborn, John E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approximation of the Eigenvalues of a Nonselfadjoint Operator Arising in the Study of the Stability of Stationary Solutions of the Navier-Stokes Equations</atitle><jtitle>SIAM journal on numerical analysis</jtitle><date>1976-04-01</date><risdate>1976</risdate><volume>13</volume><issue>2</issue><spage>185</spage><epage>197</epage><pages>185-197</pages><issn>0036-1429</issn><eissn>1095-7170</eissn><abstract>In this paper, rate of convergence estimates are established for the approximate calculation by the finite element method of the eigenvalues of the linearized operator which arises in the analysis of the stability of stationary solutions of the Navier-Stokes equations in a convex polygon.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/0713019</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-1429 |
ispartof | SIAM journal on numerical analysis, 1976-04, Vol.13 (2), p.185-197 |
issn | 0036-1429 1095-7170 |
language | eng |
recordid | cdi_proquest_miscellaneous_22678519 |
source | SIAM Journals Online; JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing |
subjects | Algebra Approximation Eigenvalues Eigenvectors Finite element analysis Finite element method Hilbert space Mathematics Navier Stokes equation Navier-Stokes equations Polygons Spectral theory Vector valued functions |
title | Approximation of the Eigenvalues of a Nonselfadjoint Operator Arising in the Study of the Stability of Stationary Solutions of the Navier-Stokes Equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T17%3A42%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approximation%20of%20the%20Eigenvalues%20of%20a%20Nonselfadjoint%20Operator%20Arising%20in%20the%20Study%20of%20the%20Stability%20of%20Stationary%20Solutions%20of%20the%20Navier-Stokes%20Equations&rft.jtitle=SIAM%20journal%20on%20numerical%20analysis&rft.au=Osborn,%20John%20E.&rft.date=1976-04-01&rft.volume=13&rft.issue=2&rft.spage=185&rft.epage=197&rft.pages=185-197&rft.issn=0036-1429&rft.eissn=1095-7170&rft_id=info:doi/10.1137/0713019&rft_dat=%3Cjstor_proqu%3E2156086%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=923639205&rft_id=info:pmid/&rft_jstor_id=2156086&rfr_iscdi=true |