Comparison of internal organs between myostatin mutant and wild‐type piglets
BACKGROUND Myostatin (MSTN) negatively regulates skeletal muscle development; however, its functions in internal organs have not been thoroughly investigated. Here, we compared the morphological, molecular, and biological characteristics of the heart, liver, spleen, lungs, kidneys, and tongue of hom...
Gespeichert in:
Veröffentlicht in: | Journal of the science of food and agriculture 2019-12, Vol.99 (15), p.6788-6795 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6795 |
---|---|
container_issue | 15 |
container_start_page | 6788 |
container_title | Journal of the science of food and agriculture |
container_volume | 99 |
creator | Luo, Zhao‐Bo Luo, Qi‐Rong Xuan, Mei‐Fu Han, Sheng‐Zhong Wang, Jun‐Xia Guo, Qing Choe, Yong-Gyu Jin, Song‐Shan Kang, Jin‐Dan Yin, Xi‐Jun |
description | BACKGROUND
Myostatin (MSTN) negatively regulates skeletal muscle development; however, its functions in internal organs have not been thoroughly investigated. Here, we compared the morphological, molecular, and biological characteristics of the heart, liver, spleen, lungs, kidneys, and tongue of homozygous MSTN mutant (MSTN−/−), heterozygous MSTN mutant (MSTN+/−), and wild‐type (WT) piglets.
RESULTS
The heart and liver were lighter in MSTN−/− piglets than in MSTN+/− piglets, while the tongue was heavier in MSTN−/− piglets than in WT piglets (P |
doi_str_mv | 10.1002/jsfa.9962 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2267735623</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2314999836</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3532-40c63b69087a5b3a97cc2a265a7305ba72e3d6962c6a43d8ecfe8720b61a44553</originalsourceid><addsrcrecordid>eNp10MtKw0AUBuBBFFurC19AAm50kXYumZlkWYr1QtGFug4nyaSkJJmYmVCy8xF8Rp_Eia0uBFfnwPn44fwInRM8JRjT2cbkMI0iQQ_QmOBI-hgTfIjG7kZ9TgI6QifGbDDGDoljNGKEiZAzOUaPC1010BZG157OvaK2qq2h9HS7htp4ibJbpWqv6rWxYAu3dRZq60GdeduizD7fP2zfKK8p1qWy5hQd5VAadbafE_S6vHlZ3Pmrp9v7xXzlp4wz6gc4FSwREQ4l8IRBJNOUAhUcJMM8AUkVy4R7KBUQsCxUaa5CSXEiCAQB52yCrna5TavfOmVsXBUmVWUJtdKdiSkVUjIuKHP08g_d6G740SlGgiiKQiacut6ptNXGtCqPm7aooO1jguOh5HgoOR5KdvZin9gllcp-5U-rDsx2wDWk-v-T4ofn5fw78guAsIbm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2314999836</pqid></control><display><type>article</type><title>Comparison of internal organs between myostatin mutant and wild‐type piglets</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Luo, Zhao‐Bo ; Luo, Qi‐Rong ; Xuan, Mei‐Fu ; Han, Sheng‐Zhong ; Wang, Jun‐Xia ; Guo, Qing ; Choe, Yong-Gyu ; Jin, Song‐Shan ; Kang, Jin‐Dan ; Yin, Xi‐Jun</creator><creatorcontrib>Luo, Zhao‐Bo ; Luo, Qi‐Rong ; Xuan, Mei‐Fu ; Han, Sheng‐Zhong ; Wang, Jun‐Xia ; Guo, Qing ; Choe, Yong-Gyu ; Jin, Song‐Shan ; Kang, Jin‐Dan ; Yin, Xi‐Jun</creatorcontrib><description>BACKGROUND
Myostatin (MSTN) negatively regulates skeletal muscle development; however, its functions in internal organs have not been thoroughly investigated. Here, we compared the morphological, molecular, and biological characteristics of the heart, liver, spleen, lungs, kidneys, and tongue of homozygous MSTN mutant (MSTN−/−), heterozygous MSTN mutant (MSTN+/−), and wild‐type (WT) piglets.
RESULTS
The heart and liver were lighter in MSTN−/− piglets than in MSTN+/− piglets, while the tongue was heavier in MSTN−/− piglets than in WT piglets (P < 0.05). Furthermore, the tongue was longer in MSTN−/− piglets than in WT piglets, and myofibers of the tongue were significantly larger in the former piglets than in the latter ones (P < 0.01). mRNA expression of MSTN in all organs was significantly lower in MSTN−/− and MSTN+/− piglets than in WT piglets (P < 0.05). Meanwhile, mRNA expression of follistatin, which is closely related to MSTN, in the heart and liver was significantly higher in MSTN−/− piglets than in MSTN+/− and WT piglets (P < 0.05). In addition, protein expression of MSTN in the heart, kidneys, and tongue was significantly lower in MSTN−/− piglets than in WT piglets (P < 0.01).
CONCLUSION
These results suggest that MSTN is widely expressed and has marked effects in multiple internal organs. Myostatin has crucial functions in regulating internal organ size, especially the tongue. © 2019 Society of Chemical Industry</description><identifier>ISSN: 0022-5142</identifier><identifier>EISSN: 1097-0010</identifier><identifier>DOI: 10.1002/jsfa.9962</identifier><identifier>PMID: 31368537</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Animal Structures - growth & development ; Animal Structures - metabolism ; Animals ; Animals, Genetically Modified - genetics ; Animals, Genetically Modified - growth & development ; Animals, Genetically Modified - metabolism ; Follistatin ; Follistatin - genetics ; Follistatin - metabolism ; Gene expression ; Heart ; Kidneys ; Liver ; Muscles ; mutant ; Mutation ; Myostatin ; Myostatin - genetics ; Myostatin - metabolism ; organ ; Organ Size ; Organic chemistry ; Organs ; Physical characteristics ; pig ; Skeletal muscle ; Spleen ; Swine - genetics ; Swine - growth & development ; Swine - metabolism ; Tongue</subject><ispartof>Journal of the science of food and agriculture, 2019-12, Vol.99 (15), p.6788-6795</ispartof><rights>2019 Society of Chemical Industry</rights><rights>2019 Society of Chemical Industry.</rights><rights>Copyright © 2019 Society of Chemical Industry</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3532-40c63b69087a5b3a97cc2a265a7305ba72e3d6962c6a43d8ecfe8720b61a44553</citedby><cites>FETCH-LOGICAL-c3532-40c63b69087a5b3a97cc2a265a7305ba72e3d6962c6a43d8ecfe8720b61a44553</cites><orcidid>0000-0003-0322-3560</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjsfa.9962$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjsfa.9962$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31368537$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Luo, Zhao‐Bo</creatorcontrib><creatorcontrib>Luo, Qi‐Rong</creatorcontrib><creatorcontrib>Xuan, Mei‐Fu</creatorcontrib><creatorcontrib>Han, Sheng‐Zhong</creatorcontrib><creatorcontrib>Wang, Jun‐Xia</creatorcontrib><creatorcontrib>Guo, Qing</creatorcontrib><creatorcontrib>Choe, Yong-Gyu</creatorcontrib><creatorcontrib>Jin, Song‐Shan</creatorcontrib><creatorcontrib>Kang, Jin‐Dan</creatorcontrib><creatorcontrib>Yin, Xi‐Jun</creatorcontrib><title>Comparison of internal organs between myostatin mutant and wild‐type piglets</title><title>Journal of the science of food and agriculture</title><addtitle>J Sci Food Agric</addtitle><description>BACKGROUND
Myostatin (MSTN) negatively regulates skeletal muscle development; however, its functions in internal organs have not been thoroughly investigated. Here, we compared the morphological, molecular, and biological characteristics of the heart, liver, spleen, lungs, kidneys, and tongue of homozygous MSTN mutant (MSTN−/−), heterozygous MSTN mutant (MSTN+/−), and wild‐type (WT) piglets.
RESULTS
The heart and liver were lighter in MSTN−/− piglets than in MSTN+/− piglets, while the tongue was heavier in MSTN−/− piglets than in WT piglets (P < 0.05). Furthermore, the tongue was longer in MSTN−/− piglets than in WT piglets, and myofibers of the tongue were significantly larger in the former piglets than in the latter ones (P < 0.01). mRNA expression of MSTN in all organs was significantly lower in MSTN−/− and MSTN+/− piglets than in WT piglets (P < 0.05). Meanwhile, mRNA expression of follistatin, which is closely related to MSTN, in the heart and liver was significantly higher in MSTN−/− piglets than in MSTN+/− and WT piglets (P < 0.05). In addition, protein expression of MSTN in the heart, kidneys, and tongue was significantly lower in MSTN−/− piglets than in WT piglets (P < 0.01).
CONCLUSION
These results suggest that MSTN is widely expressed and has marked effects in multiple internal organs. Myostatin has crucial functions in regulating internal organ size, especially the tongue. © 2019 Society of Chemical Industry</description><subject>Animal Structures - growth & development</subject><subject>Animal Structures - metabolism</subject><subject>Animals</subject><subject>Animals, Genetically Modified - genetics</subject><subject>Animals, Genetically Modified - growth & development</subject><subject>Animals, Genetically Modified - metabolism</subject><subject>Follistatin</subject><subject>Follistatin - genetics</subject><subject>Follistatin - metabolism</subject><subject>Gene expression</subject><subject>Heart</subject><subject>Kidneys</subject><subject>Liver</subject><subject>Muscles</subject><subject>mutant</subject><subject>Mutation</subject><subject>Myostatin</subject><subject>Myostatin - genetics</subject><subject>Myostatin - metabolism</subject><subject>organ</subject><subject>Organ Size</subject><subject>Organic chemistry</subject><subject>Organs</subject><subject>Physical characteristics</subject><subject>pig</subject><subject>Skeletal muscle</subject><subject>Spleen</subject><subject>Swine - genetics</subject><subject>Swine - growth & development</subject><subject>Swine - metabolism</subject><subject>Tongue</subject><issn>0022-5142</issn><issn>1097-0010</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10MtKw0AUBuBBFFurC19AAm50kXYumZlkWYr1QtGFug4nyaSkJJmYmVCy8xF8Rp_Eia0uBFfnwPn44fwInRM8JRjT2cbkMI0iQQ_QmOBI-hgTfIjG7kZ9TgI6QifGbDDGDoljNGKEiZAzOUaPC1010BZG157OvaK2qq2h9HS7htp4ibJbpWqv6rWxYAu3dRZq60GdeduizD7fP2zfKK8p1qWy5hQd5VAadbafE_S6vHlZ3Pmrp9v7xXzlp4wz6gc4FSwREQ4l8IRBJNOUAhUcJMM8AUkVy4R7KBUQsCxUaa5CSXEiCAQB52yCrna5TavfOmVsXBUmVWUJtdKdiSkVUjIuKHP08g_d6G740SlGgiiKQiacut6ptNXGtCqPm7aooO1jguOh5HgoOR5KdvZin9gllcp-5U-rDsx2wDWk-v-T4ofn5fw78guAsIbm</recordid><startdate>201912</startdate><enddate>201912</enddate><creator>Luo, Zhao‐Bo</creator><creator>Luo, Qi‐Rong</creator><creator>Xuan, Mei‐Fu</creator><creator>Han, Sheng‐Zhong</creator><creator>Wang, Jun‐Xia</creator><creator>Guo, Qing</creator><creator>Choe, Yong-Gyu</creator><creator>Jin, Song‐Shan</creator><creator>Kang, Jin‐Dan</creator><creator>Yin, Xi‐Jun</creator><general>John Wiley & Sons, Ltd</general><general>John Wiley and Sons, Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QL</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0322-3560</orcidid></search><sort><creationdate>201912</creationdate><title>Comparison of internal organs between myostatin mutant and wild‐type piglets</title><author>Luo, Zhao‐Bo ; Luo, Qi‐Rong ; Xuan, Mei‐Fu ; Han, Sheng‐Zhong ; Wang, Jun‐Xia ; Guo, Qing ; Choe, Yong-Gyu ; Jin, Song‐Shan ; Kang, Jin‐Dan ; Yin, Xi‐Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3532-40c63b69087a5b3a97cc2a265a7305ba72e3d6962c6a43d8ecfe8720b61a44553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animal Structures - growth & development</topic><topic>Animal Structures - metabolism</topic><topic>Animals</topic><topic>Animals, Genetically Modified - genetics</topic><topic>Animals, Genetically Modified - growth & development</topic><topic>Animals, Genetically Modified - metabolism</topic><topic>Follistatin</topic><topic>Follistatin - genetics</topic><topic>Follistatin - metabolism</topic><topic>Gene expression</topic><topic>Heart</topic><topic>Kidneys</topic><topic>Liver</topic><topic>Muscles</topic><topic>mutant</topic><topic>Mutation</topic><topic>Myostatin</topic><topic>Myostatin - genetics</topic><topic>Myostatin - metabolism</topic><topic>organ</topic><topic>Organ Size</topic><topic>Organic chemistry</topic><topic>Organs</topic><topic>Physical characteristics</topic><topic>pig</topic><topic>Skeletal muscle</topic><topic>Spleen</topic><topic>Swine - genetics</topic><topic>Swine - growth & development</topic><topic>Swine - metabolism</topic><topic>Tongue</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Zhao‐Bo</creatorcontrib><creatorcontrib>Luo, Qi‐Rong</creatorcontrib><creatorcontrib>Xuan, Mei‐Fu</creatorcontrib><creatorcontrib>Han, Sheng‐Zhong</creatorcontrib><creatorcontrib>Wang, Jun‐Xia</creatorcontrib><creatorcontrib>Guo, Qing</creatorcontrib><creatorcontrib>Choe, Yong-Gyu</creatorcontrib><creatorcontrib>Jin, Song‐Shan</creatorcontrib><creatorcontrib>Kang, Jin‐Dan</creatorcontrib><creatorcontrib>Yin, Xi‐Jun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the science of food and agriculture</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Zhao‐Bo</au><au>Luo, Qi‐Rong</au><au>Xuan, Mei‐Fu</au><au>Han, Sheng‐Zhong</au><au>Wang, Jun‐Xia</au><au>Guo, Qing</au><au>Choe, Yong-Gyu</au><au>Jin, Song‐Shan</au><au>Kang, Jin‐Dan</au><au>Yin, Xi‐Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of internal organs between myostatin mutant and wild‐type piglets</atitle><jtitle>Journal of the science of food and agriculture</jtitle><addtitle>J Sci Food Agric</addtitle><date>2019-12</date><risdate>2019</risdate><volume>99</volume><issue>15</issue><spage>6788</spage><epage>6795</epage><pages>6788-6795</pages><issn>0022-5142</issn><eissn>1097-0010</eissn><abstract>BACKGROUND
Myostatin (MSTN) negatively regulates skeletal muscle development; however, its functions in internal organs have not been thoroughly investigated. Here, we compared the morphological, molecular, and biological characteristics of the heart, liver, spleen, lungs, kidneys, and tongue of homozygous MSTN mutant (MSTN−/−), heterozygous MSTN mutant (MSTN+/−), and wild‐type (WT) piglets.
RESULTS
The heart and liver were lighter in MSTN−/− piglets than in MSTN+/− piglets, while the tongue was heavier in MSTN−/− piglets than in WT piglets (P < 0.05). Furthermore, the tongue was longer in MSTN−/− piglets than in WT piglets, and myofibers of the tongue were significantly larger in the former piglets than in the latter ones (P < 0.01). mRNA expression of MSTN in all organs was significantly lower in MSTN−/− and MSTN+/− piglets than in WT piglets (P < 0.05). Meanwhile, mRNA expression of follistatin, which is closely related to MSTN, in the heart and liver was significantly higher in MSTN−/− piglets than in MSTN+/− and WT piglets (P < 0.05). In addition, protein expression of MSTN in the heart, kidneys, and tongue was significantly lower in MSTN−/− piglets than in WT piglets (P < 0.01).
CONCLUSION
These results suggest that MSTN is widely expressed and has marked effects in multiple internal organs. Myostatin has crucial functions in regulating internal organ size, especially the tongue. © 2019 Society of Chemical Industry</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><pmid>31368537</pmid><doi>10.1002/jsfa.9962</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-0322-3560</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-5142 |
ispartof | Journal of the science of food and agriculture, 2019-12, Vol.99 (15), p.6788-6795 |
issn | 0022-5142 1097-0010 |
language | eng |
recordid | cdi_proquest_miscellaneous_2267735623 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Animal Structures - growth & development Animal Structures - metabolism Animals Animals, Genetically Modified - genetics Animals, Genetically Modified - growth & development Animals, Genetically Modified - metabolism Follistatin Follistatin - genetics Follistatin - metabolism Gene expression Heart Kidneys Liver Muscles mutant Mutation Myostatin Myostatin - genetics Myostatin - metabolism organ Organ Size Organic chemistry Organs Physical characteristics pig Skeletal muscle Spleen Swine - genetics Swine - growth & development Swine - metabolism Tongue |
title | Comparison of internal organs between myostatin mutant and wild‐type piglets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T07%3A21%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20internal%20organs%20between%20myostatin%20mutant%20and%20wild%E2%80%90type%20piglets&rft.jtitle=Journal%20of%20the%20science%20of%20food%20and%20agriculture&rft.au=Luo,%20Zhao%E2%80%90Bo&rft.date=2019-12&rft.volume=99&rft.issue=15&rft.spage=6788&rft.epage=6795&rft.pages=6788-6795&rft.issn=0022-5142&rft.eissn=1097-0010&rft_id=info:doi/10.1002/jsfa.9962&rft_dat=%3Cproquest_cross%3E2314999836%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2314999836&rft_id=info:pmid/31368537&rfr_iscdi=true |