Critical stripping current leads to dendrite formation on plating in lithium anode solid electrolyte cells

A critical current density on stripping is identified that results in dendrite formation on plating and cell failure. When the stripping current density removes Li from the interface faster than it can be replenished, voids form in the Li at the interface and accumulate on cycling, increasing the lo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature materials 2019-10, Vol.18 (10), p.1105-1111
Hauptverfasser: Kasemchainan, Jitti, Zekoll, Stefanie, Spencer Jolly, Dominic, Ning, Ziyang, Hartley, Gareth O., Marrow, James, Bruce, Peter G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1111
container_issue 10
container_start_page 1105
container_title Nature materials
container_volume 18
creator Kasemchainan, Jitti
Zekoll, Stefanie
Spencer Jolly, Dominic
Ning, Ziyang
Hartley, Gareth O.
Marrow, James
Bruce, Peter G.
description A critical current density on stripping is identified that results in dendrite formation on plating and cell failure. When the stripping current density removes Li from the interface faster than it can be replenished, voids form in the Li at the interface and accumulate on cycling, increasing the local current density at the interface and ultimately leading to dendrite formation on plating, short circuit and cell death. This occurs even when the overall current density is considerably below the threshold for dendrite formation on plating. For the Li/Li 6 PS 5 Cl/Li cell, this is 0.2 and 1.0 mA cm −2 at 3 and 7 MPa pressure, respectively, compared with a critical current for plating of 2.0 mA cm −2 at both 3 and 7 MPa. The pressure dependence on stripping indicates that creep rather than Li diffusion is the dominant mechanism transporting Li to the interface. The critical stripping current is a major factor limiting the power density of Li anode solid-state cells. Considerable pressure may be required to achieve even modest power densities in solid-state cells. A ceramic electrolyte with a lithium metal anode can offer advantages over liquid electrolytes for Li-ion battery performance. A critical current density on stripping in a solid-state cell is identified, resulting in dendrite formation on plating and failure.
doi_str_mv 10.1038/s41563-019-0438-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2267022657</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2293850122</sourcerecordid><originalsourceid>FETCH-LOGICAL-c477t-2163c07563616542f7af2d08ed7552904c94cd671d5426e884d3133d6a9ef3933</originalsourceid><addsrcrecordid>eNp1kU2LFDEQhoMo7rr6A7xIwIuX1nync5Rh_YAFL3oOMUmvGdJJm6QP---tYUYFQQhJQT31pqpehF5S8pYSPr_rgkrFJ0LNRASfJ_MIXVOh1SSUIo8vMaWMXaFnvR8JYVRK9RRdccrlbAS9RsdDSyN5l3EfLW1bKvfY763FMnCOLnQ8Kg6xBMAiXmpb3Ui1YDhbhhDwVHBO40faV-xKDRH3mlPAMUc_Ws0PUOdjzv05erK43OOLy3uDvn24_Xr4NN19-fj58P5u8kLrMTGquCcaBlNUScEW7RYWyByDlpIZIrwRPihNAyRVnGcRYBwelDNx4YbzG_TmrLu1-nOPfdg19VMHrsS6d8uY0gQuqQF9_Q96rHsr0B1Qhs-SwPKAomfKt9p7i4vdWlpde7CU2JMR9myEBSPsyQhroObVRXn_vsbwp-L35gFgZ6BDqtzH9vfr_6v-ArrFkuk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2293850122</pqid></control><display><type>article</type><title>Critical stripping current leads to dendrite formation on plating in lithium anode solid electrolyte cells</title><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Kasemchainan, Jitti ; Zekoll, Stefanie ; Spencer Jolly, Dominic ; Ning, Ziyang ; Hartley, Gareth O. ; Marrow, James ; Bruce, Peter G.</creator><creatorcontrib>Kasemchainan, Jitti ; Zekoll, Stefanie ; Spencer Jolly, Dominic ; Ning, Ziyang ; Hartley, Gareth O. ; Marrow, James ; Bruce, Peter G.</creatorcontrib><description>A critical current density on stripping is identified that results in dendrite formation on plating and cell failure. When the stripping current density removes Li from the interface faster than it can be replenished, voids form in the Li at the interface and accumulate on cycling, increasing the local current density at the interface and ultimately leading to dendrite formation on plating, short circuit and cell death. This occurs even when the overall current density is considerably below the threshold for dendrite formation on plating. For the Li/Li 6 PS 5 Cl/Li cell, this is 0.2 and 1.0 mA cm −2 at 3 and 7 MPa pressure, respectively, compared with a critical current for plating of 2.0 mA cm −2 at both 3 and 7 MPa. The pressure dependence on stripping indicates that creep rather than Li diffusion is the dominant mechanism transporting Li to the interface. The critical stripping current is a major factor limiting the power density of Li anode solid-state cells. Considerable pressure may be required to achieve even modest power densities in solid-state cells. A ceramic electrolyte with a lithium metal anode can offer advantages over liquid electrolytes for Li-ion battery performance. A critical current density on stripping in a solid-state cell is identified, resulting in dendrite formation on plating and failure.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/s41563-019-0438-9</identifier><identifier>PMID: 31358941</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/299/891 ; 639/638/161/891 ; Anodes ; Biomaterials ; Cell death ; Chemistry and Materials Science ; Circuits ; Condensed Matter Physics ; Critical current density ; Dendrites ; Dendritic structure ; Electrodes ; Electrolytes ; Electrolytic cells ; Lithium ; Local current ; Materials Science ; Nanotechnology ; Optical and Electronic Materials ; Plating ; Pressure dependence ; Scanning electron microscopy ; Short circuits ; Solid electrolytes ; Solid state ; Stripping</subject><ispartof>Nature materials, 2019-10, Vol.18 (10), p.1105-1111</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><rights>Copyright Nature Publishing Group Oct 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c477t-2163c07563616542f7af2d08ed7552904c94cd671d5426e884d3133d6a9ef3933</citedby><cites>FETCH-LOGICAL-c477t-2163c07563616542f7af2d08ed7552904c94cd671d5426e884d3133d6a9ef3933</cites><orcidid>0000-0001-6748-3084</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41563-019-0438-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41563-019-0438-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31358941$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kasemchainan, Jitti</creatorcontrib><creatorcontrib>Zekoll, Stefanie</creatorcontrib><creatorcontrib>Spencer Jolly, Dominic</creatorcontrib><creatorcontrib>Ning, Ziyang</creatorcontrib><creatorcontrib>Hartley, Gareth O.</creatorcontrib><creatorcontrib>Marrow, James</creatorcontrib><creatorcontrib>Bruce, Peter G.</creatorcontrib><title>Critical stripping current leads to dendrite formation on plating in lithium anode solid electrolyte cells</title><title>Nature materials</title><addtitle>Nat. Mater</addtitle><addtitle>Nat Mater</addtitle><description>A critical current density on stripping is identified that results in dendrite formation on plating and cell failure. When the stripping current density removes Li from the interface faster than it can be replenished, voids form in the Li at the interface and accumulate on cycling, increasing the local current density at the interface and ultimately leading to dendrite formation on plating, short circuit and cell death. This occurs even when the overall current density is considerably below the threshold for dendrite formation on plating. For the Li/Li 6 PS 5 Cl/Li cell, this is 0.2 and 1.0 mA cm −2 at 3 and 7 MPa pressure, respectively, compared with a critical current for plating of 2.0 mA cm −2 at both 3 and 7 MPa. The pressure dependence on stripping indicates that creep rather than Li diffusion is the dominant mechanism transporting Li to the interface. The critical stripping current is a major factor limiting the power density of Li anode solid-state cells. Considerable pressure may be required to achieve even modest power densities in solid-state cells. A ceramic electrolyte with a lithium metal anode can offer advantages over liquid electrolytes for Li-ion battery performance. A critical current density on stripping in a solid-state cell is identified, resulting in dendrite formation on plating and failure.</description><subject>639/301/299/891</subject><subject>639/638/161/891</subject><subject>Anodes</subject><subject>Biomaterials</subject><subject>Cell death</subject><subject>Chemistry and Materials Science</subject><subject>Circuits</subject><subject>Condensed Matter Physics</subject><subject>Critical current density</subject><subject>Dendrites</subject><subject>Dendritic structure</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Electrolytic cells</subject><subject>Lithium</subject><subject>Local current</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Plating</subject><subject>Pressure dependence</subject><subject>Scanning electron microscopy</subject><subject>Short circuits</subject><subject>Solid electrolytes</subject><subject>Solid state</subject><subject>Stripping</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kU2LFDEQhoMo7rr6A7xIwIuX1nync5Rh_YAFL3oOMUmvGdJJm6QP---tYUYFQQhJQT31pqpehF5S8pYSPr_rgkrFJ0LNRASfJ_MIXVOh1SSUIo8vMaWMXaFnvR8JYVRK9RRdccrlbAS9RsdDSyN5l3EfLW1bKvfY763FMnCOLnQ8Kg6xBMAiXmpb3Ui1YDhbhhDwVHBO40faV-xKDRH3mlPAMUc_Ws0PUOdjzv05erK43OOLy3uDvn24_Xr4NN19-fj58P5u8kLrMTGquCcaBlNUScEW7RYWyByDlpIZIrwRPihNAyRVnGcRYBwelDNx4YbzG_TmrLu1-nOPfdg19VMHrsS6d8uY0gQuqQF9_Q96rHsr0B1Qhs-SwPKAomfKt9p7i4vdWlpde7CU2JMR9myEBSPsyQhroObVRXn_vsbwp-L35gFgZ6BDqtzH9vfr_6v-ArrFkuk</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Kasemchainan, Jitti</creator><creator>Zekoll, Stefanie</creator><creator>Spencer Jolly, Dominic</creator><creator>Ning, Ziyang</creator><creator>Hartley, Gareth O.</creator><creator>Marrow, James</creator><creator>Bruce, Peter G.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6748-3084</orcidid></search><sort><creationdate>20191001</creationdate><title>Critical stripping current leads to dendrite formation on plating in lithium anode solid electrolyte cells</title><author>Kasemchainan, Jitti ; Zekoll, Stefanie ; Spencer Jolly, Dominic ; Ning, Ziyang ; Hartley, Gareth O. ; Marrow, James ; Bruce, Peter G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c477t-2163c07563616542f7af2d08ed7552904c94cd671d5426e884d3133d6a9ef3933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>639/301/299/891</topic><topic>639/638/161/891</topic><topic>Anodes</topic><topic>Biomaterials</topic><topic>Cell death</topic><topic>Chemistry and Materials Science</topic><topic>Circuits</topic><topic>Condensed Matter Physics</topic><topic>Critical current density</topic><topic>Dendrites</topic><topic>Dendritic structure</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Electrolytic cells</topic><topic>Lithium</topic><topic>Local current</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Plating</topic><topic>Pressure dependence</topic><topic>Scanning electron microscopy</topic><topic>Short circuits</topic><topic>Solid electrolytes</topic><topic>Solid state</topic><topic>Stripping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kasemchainan, Jitti</creatorcontrib><creatorcontrib>Zekoll, Stefanie</creatorcontrib><creatorcontrib>Spencer Jolly, Dominic</creatorcontrib><creatorcontrib>Ning, Ziyang</creatorcontrib><creatorcontrib>Hartley, Gareth O.</creatorcontrib><creatorcontrib>Marrow, James</creatorcontrib><creatorcontrib>Bruce, Peter G.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kasemchainan, Jitti</au><au>Zekoll, Stefanie</au><au>Spencer Jolly, Dominic</au><au>Ning, Ziyang</au><au>Hartley, Gareth O.</au><au>Marrow, James</au><au>Bruce, Peter G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Critical stripping current leads to dendrite formation on plating in lithium anode solid electrolyte cells</atitle><jtitle>Nature materials</jtitle><stitle>Nat. Mater</stitle><addtitle>Nat Mater</addtitle><date>2019-10-01</date><risdate>2019</risdate><volume>18</volume><issue>10</issue><spage>1105</spage><epage>1111</epage><pages>1105-1111</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>A critical current density on stripping is identified that results in dendrite formation on plating and cell failure. When the stripping current density removes Li from the interface faster than it can be replenished, voids form in the Li at the interface and accumulate on cycling, increasing the local current density at the interface and ultimately leading to dendrite formation on plating, short circuit and cell death. This occurs even when the overall current density is considerably below the threshold for dendrite formation on plating. For the Li/Li 6 PS 5 Cl/Li cell, this is 0.2 and 1.0 mA cm −2 at 3 and 7 MPa pressure, respectively, compared with a critical current for plating of 2.0 mA cm −2 at both 3 and 7 MPa. The pressure dependence on stripping indicates that creep rather than Li diffusion is the dominant mechanism transporting Li to the interface. The critical stripping current is a major factor limiting the power density of Li anode solid-state cells. Considerable pressure may be required to achieve even modest power densities in solid-state cells. A ceramic electrolyte with a lithium metal anode can offer advantages over liquid electrolytes for Li-ion battery performance. A critical current density on stripping in a solid-state cell is identified, resulting in dendrite formation on plating and failure.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31358941</pmid><doi>10.1038/s41563-019-0438-9</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-6748-3084</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1476-1122
ispartof Nature materials, 2019-10, Vol.18 (10), p.1105-1111
issn 1476-1122
1476-4660
language eng
recordid cdi_proquest_miscellaneous_2267022657
source Nature; SpringerLink Journals - AutoHoldings
subjects 639/301/299/891
639/638/161/891
Anodes
Biomaterials
Cell death
Chemistry and Materials Science
Circuits
Condensed Matter Physics
Critical current density
Dendrites
Dendritic structure
Electrodes
Electrolytes
Electrolytic cells
Lithium
Local current
Materials Science
Nanotechnology
Optical and Electronic Materials
Plating
Pressure dependence
Scanning electron microscopy
Short circuits
Solid electrolytes
Solid state
Stripping
title Critical stripping current leads to dendrite formation on plating in lithium anode solid electrolyte cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A38%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Critical%20stripping%20current%20leads%20to%20dendrite%20formation%20on%20plating%20in%20lithium%20anode%20solid%20electrolyte%20cells&rft.jtitle=Nature%20materials&rft.au=Kasemchainan,%20Jitti&rft.date=2019-10-01&rft.volume=18&rft.issue=10&rft.spage=1105&rft.epage=1111&rft.pages=1105-1111&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/s41563-019-0438-9&rft_dat=%3Cproquest_cross%3E2293850122%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2293850122&rft_id=info:pmid/31358941&rfr_iscdi=true