Biogenic synthesis of silver nanoparticles using Brazilian propolis
Biological methods have been used to synthesize silver nanoparticles through materials such as bacteria, fungi, plants, and propolis due to their reducing properties, stabilizer role and environmentally friendly characteristic. Considering the antimicrobial activity of propolis as well as the broad‐...
Gespeichert in:
Veröffentlicht in: | Biotechnology progress 2019-11, Vol.35 (6), p.e2888-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 6 |
container_start_page | e2888 |
container_title | Biotechnology progress |
container_volume | 35 |
creator | Barbosa, Valcilaine T. Souza, Joyelanne K. C. Alvino, Valter Meneghetti, Mario R. Florez‐Rodriguez, Pedro P. Moreira, Rui E. Paulino, Gustavo V. B. Landell, Melissa F. Basílio‐Júnior, Irinaldo D. Nascimento, Ticiano G. Grillo, Luciano A. M. Dornelas, Camila B. |
description | Biological methods have been used to synthesize silver nanoparticles through materials such as bacteria, fungi, plants, and propolis due to their reducing properties, stabilizer role and environmentally friendly characteristic. Considering the antimicrobial activity of propolis as well as the broad‐spectrum antibacterial effects of silver nanoparticles, this study aim to describe the use of Brazilian propolis to synthesize silver nanoparticles (AgNP‐P) and investigate its antimicrobial activity. The synthesis was optimized by factorial design, choosing the best conditions for smaller size particles. AgNP‐P demonstrated a maximum absorbance at 412 nm in ultraviolet‐visible spectra, which indicated a spherical format and its formation. Dynamic light scattering demonstrated a hydrodynamic size of 109 nm and polydispersity index less than 0.3, showing a good size distribution and stability. After its purification via centrifugation, microscopy analysis corroborates the format and showed the presence of propolis around silver nanoparticle. X‐ray diffraction peaks were attributed to the main planes of the metallic silver crystalline structure; meanwhile infrared spectroscopy demonstrated the main groups responsible for silver reduction, represented by ∼22% of AgNP‐P indicates by thermal analysis. Our product revealed an important antimicrobial activity indicating a synergism between propolis and silver nanoparticles as expected and promising to be an effective antimicrobial product to be used in infections. |
doi_str_mv | 10.1002/btpr.2888 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2266337160</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2266337160</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3908-6a783df8ef712506cc8fb0e72aaef303e108f2b31d30d93269b3e2b3f77fb5b83</originalsourceid><addsrcrecordid>eNp1kM9LwzAUgIMobk4P_gNS8KKHuiRvTdKjG_6CgSLzHNI2mRldWpNWmX-9rZseBE_hwcf3Xj6ETgm-IhjTcdbU_ooKIfbQkCQUxwwD7KOh4AmLeQpigI5CWGGMBWb0EA2AQAJiMhmi2dRWS-1sHoWNa151sCGqTBRs-a595JSrauUbm5c6RG2wbhlNvfq0pVUuqn1VV6UNx-jAqDLok907Qi-3N4vZfTx_vHuYXc_jHFIsYqa4gMIIbTihCWZ5LkyGNadKaQMYNMHC0AxIAbhIgbI0A93NhnOTJZmAEbrYervFb60OjVzbkOuyVE5XbZCUMgbASff7ETr_g66q1rvuOkmBJiyFSdoLL7dU7qsQvDay9nat_EYSLPuysi8r-7Ide7YzttlaF7_kT8oOGG-BD1vqzf8mOV08PX8rvwCqF4ML</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2325693498</pqid></control><display><type>article</type><title>Biogenic synthesis of silver nanoparticles using Brazilian propolis</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Barbosa, Valcilaine T. ; Souza, Joyelanne K. C. ; Alvino, Valter ; Meneghetti, Mario R. ; Florez‐Rodriguez, Pedro P. ; Moreira, Rui E. ; Paulino, Gustavo V. B. ; Landell, Melissa F. ; Basílio‐Júnior, Irinaldo D. ; Nascimento, Ticiano G. ; Grillo, Luciano A. M. ; Dornelas, Camila B.</creator><creatorcontrib>Barbosa, Valcilaine T. ; Souza, Joyelanne K. C. ; Alvino, Valter ; Meneghetti, Mario R. ; Florez‐Rodriguez, Pedro P. ; Moreira, Rui E. ; Paulino, Gustavo V. B. ; Landell, Melissa F. ; Basílio‐Júnior, Irinaldo D. ; Nascimento, Ticiano G. ; Grillo, Luciano A. M. ; Dornelas, Camila B.</creatorcontrib><description>Biological methods have been used to synthesize silver nanoparticles through materials such as bacteria, fungi, plants, and propolis due to their reducing properties, stabilizer role and environmentally friendly characteristic. Considering the antimicrobial activity of propolis as well as the broad‐spectrum antibacterial effects of silver nanoparticles, this study aim to describe the use of Brazilian propolis to synthesize silver nanoparticles (AgNP‐P) and investigate its antimicrobial activity. The synthesis was optimized by factorial design, choosing the best conditions for smaller size particles. AgNP‐P demonstrated a maximum absorbance at 412 nm in ultraviolet‐visible spectra, which indicated a spherical format and its formation. Dynamic light scattering demonstrated a hydrodynamic size of 109 nm and polydispersity index less than 0.3, showing a good size distribution and stability. After its purification via centrifugation, microscopy analysis corroborates the format and showed the presence of propolis around silver nanoparticle. X‐ray diffraction peaks were attributed to the main planes of the metallic silver crystalline structure; meanwhile infrared spectroscopy demonstrated the main groups responsible for silver reduction, represented by ∼22% of AgNP‐P indicates by thermal analysis. Our product revealed an important antimicrobial activity indicating a synergism between propolis and silver nanoparticles as expected and promising to be an effective antimicrobial product to be used in infections.</description><identifier>ISSN: 8756-7938</identifier><identifier>EISSN: 1520-6033</identifier><identifier>DOI: 10.1002/btpr.2888</identifier><identifier>PMID: 31353844</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Antimicrobial activity ; Antimicrobial agents ; Bacteria ; biogenic synthesis ; Centrifugation ; Design optimization ; Factorial design ; Format ; Fungi ; Infrared spectroscopy ; Light scattering ; Nanoparticles ; Particle size distribution ; Photon correlation spectroscopy ; Polydispersity ; Propolis ; Purification ; Silver ; silver nanoparticles ; Size distribution ; Spectrum analysis ; Stability analysis ; Synergism ; Synthesis ; Thermal analysis ; Ultraviolet spectra</subject><ispartof>Biotechnology progress, 2019-11, Vol.35 (6), p.e2888-n/a</ispartof><rights>2019 American Institute of Chemical Engineers</rights><rights>2019 American Institute of Chemical Engineers.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3908-6a783df8ef712506cc8fb0e72aaef303e108f2b31d30d93269b3e2b3f77fb5b83</citedby><cites>FETCH-LOGICAL-c3908-6a783df8ef712506cc8fb0e72aaef303e108f2b31d30d93269b3e2b3f77fb5b83</cites><orcidid>0000-0002-2268-2650</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbtpr.2888$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbtpr.2888$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31353844$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Barbosa, Valcilaine T.</creatorcontrib><creatorcontrib>Souza, Joyelanne K. C.</creatorcontrib><creatorcontrib>Alvino, Valter</creatorcontrib><creatorcontrib>Meneghetti, Mario R.</creatorcontrib><creatorcontrib>Florez‐Rodriguez, Pedro P.</creatorcontrib><creatorcontrib>Moreira, Rui E.</creatorcontrib><creatorcontrib>Paulino, Gustavo V. B.</creatorcontrib><creatorcontrib>Landell, Melissa F.</creatorcontrib><creatorcontrib>Basílio‐Júnior, Irinaldo D.</creatorcontrib><creatorcontrib>Nascimento, Ticiano G.</creatorcontrib><creatorcontrib>Grillo, Luciano A. M.</creatorcontrib><creatorcontrib>Dornelas, Camila B.</creatorcontrib><title>Biogenic synthesis of silver nanoparticles using Brazilian propolis</title><title>Biotechnology progress</title><addtitle>Biotechnol Prog</addtitle><description>Biological methods have been used to synthesize silver nanoparticles through materials such as bacteria, fungi, plants, and propolis due to their reducing properties, stabilizer role and environmentally friendly characteristic. Considering the antimicrobial activity of propolis as well as the broad‐spectrum antibacterial effects of silver nanoparticles, this study aim to describe the use of Brazilian propolis to synthesize silver nanoparticles (AgNP‐P) and investigate its antimicrobial activity. The synthesis was optimized by factorial design, choosing the best conditions for smaller size particles. AgNP‐P demonstrated a maximum absorbance at 412 nm in ultraviolet‐visible spectra, which indicated a spherical format and its formation. Dynamic light scattering demonstrated a hydrodynamic size of 109 nm and polydispersity index less than 0.3, showing a good size distribution and stability. After its purification via centrifugation, microscopy analysis corroborates the format and showed the presence of propolis around silver nanoparticle. X‐ray diffraction peaks were attributed to the main planes of the metallic silver crystalline structure; meanwhile infrared spectroscopy demonstrated the main groups responsible for silver reduction, represented by ∼22% of AgNP‐P indicates by thermal analysis. Our product revealed an important antimicrobial activity indicating a synergism between propolis and silver nanoparticles as expected and promising to be an effective antimicrobial product to be used in infections.</description><subject>Antimicrobial activity</subject><subject>Antimicrobial agents</subject><subject>Bacteria</subject><subject>biogenic synthesis</subject><subject>Centrifugation</subject><subject>Design optimization</subject><subject>Factorial design</subject><subject>Format</subject><subject>Fungi</subject><subject>Infrared spectroscopy</subject><subject>Light scattering</subject><subject>Nanoparticles</subject><subject>Particle size distribution</subject><subject>Photon correlation spectroscopy</subject><subject>Polydispersity</subject><subject>Propolis</subject><subject>Purification</subject><subject>Silver</subject><subject>silver nanoparticles</subject><subject>Size distribution</subject><subject>Spectrum analysis</subject><subject>Stability analysis</subject><subject>Synergism</subject><subject>Synthesis</subject><subject>Thermal analysis</subject><subject>Ultraviolet spectra</subject><issn>8756-7938</issn><issn>1520-6033</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kM9LwzAUgIMobk4P_gNS8KKHuiRvTdKjG_6CgSLzHNI2mRldWpNWmX-9rZseBE_hwcf3Xj6ETgm-IhjTcdbU_ooKIfbQkCQUxwwD7KOh4AmLeQpigI5CWGGMBWb0EA2AQAJiMhmi2dRWS-1sHoWNa151sCGqTBRs-a595JSrauUbm5c6RG2wbhlNvfq0pVUuqn1VV6UNx-jAqDLok907Qi-3N4vZfTx_vHuYXc_jHFIsYqa4gMIIbTihCWZ5LkyGNadKaQMYNMHC0AxIAbhIgbI0A93NhnOTJZmAEbrYervFb60OjVzbkOuyVE5XbZCUMgbASff7ETr_g66q1rvuOkmBJiyFSdoLL7dU7qsQvDay9nat_EYSLPuysi8r-7Ide7YzttlaF7_kT8oOGG-BD1vqzf8mOV08PX8rvwCqF4ML</recordid><startdate>201911</startdate><enddate>201911</enddate><creator>Barbosa, Valcilaine T.</creator><creator>Souza, Joyelanne K. C.</creator><creator>Alvino, Valter</creator><creator>Meneghetti, Mario R.</creator><creator>Florez‐Rodriguez, Pedro P.</creator><creator>Moreira, Rui E.</creator><creator>Paulino, Gustavo V. B.</creator><creator>Landell, Melissa F.</creator><creator>Basílio‐Júnior, Irinaldo D.</creator><creator>Nascimento, Ticiano G.</creator><creator>Grillo, Luciano A. M.</creator><creator>Dornelas, Camila B.</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2268-2650</orcidid></search><sort><creationdate>201911</creationdate><title>Biogenic synthesis of silver nanoparticles using Brazilian propolis</title><author>Barbosa, Valcilaine T. ; Souza, Joyelanne K. C. ; Alvino, Valter ; Meneghetti, Mario R. ; Florez‐Rodriguez, Pedro P. ; Moreira, Rui E. ; Paulino, Gustavo V. B. ; Landell, Melissa F. ; Basílio‐Júnior, Irinaldo D. ; Nascimento, Ticiano G. ; Grillo, Luciano A. M. ; Dornelas, Camila B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3908-6a783df8ef712506cc8fb0e72aaef303e108f2b31d30d93269b3e2b3f77fb5b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Antimicrobial activity</topic><topic>Antimicrobial agents</topic><topic>Bacteria</topic><topic>biogenic synthesis</topic><topic>Centrifugation</topic><topic>Design optimization</topic><topic>Factorial design</topic><topic>Format</topic><topic>Fungi</topic><topic>Infrared spectroscopy</topic><topic>Light scattering</topic><topic>Nanoparticles</topic><topic>Particle size distribution</topic><topic>Photon correlation spectroscopy</topic><topic>Polydispersity</topic><topic>Propolis</topic><topic>Purification</topic><topic>Silver</topic><topic>silver nanoparticles</topic><topic>Size distribution</topic><topic>Spectrum analysis</topic><topic>Stability analysis</topic><topic>Synergism</topic><topic>Synthesis</topic><topic>Thermal analysis</topic><topic>Ultraviolet spectra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barbosa, Valcilaine T.</creatorcontrib><creatorcontrib>Souza, Joyelanne K. C.</creatorcontrib><creatorcontrib>Alvino, Valter</creatorcontrib><creatorcontrib>Meneghetti, Mario R.</creatorcontrib><creatorcontrib>Florez‐Rodriguez, Pedro P.</creatorcontrib><creatorcontrib>Moreira, Rui E.</creatorcontrib><creatorcontrib>Paulino, Gustavo V. B.</creatorcontrib><creatorcontrib>Landell, Melissa F.</creatorcontrib><creatorcontrib>Basílio‐Júnior, Irinaldo D.</creatorcontrib><creatorcontrib>Nascimento, Ticiano G.</creatorcontrib><creatorcontrib>Grillo, Luciano A. M.</creatorcontrib><creatorcontrib>Dornelas, Camila B.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology progress</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barbosa, Valcilaine T.</au><au>Souza, Joyelanne K. C.</au><au>Alvino, Valter</au><au>Meneghetti, Mario R.</au><au>Florez‐Rodriguez, Pedro P.</au><au>Moreira, Rui E.</au><au>Paulino, Gustavo V. B.</au><au>Landell, Melissa F.</au><au>Basílio‐Júnior, Irinaldo D.</au><au>Nascimento, Ticiano G.</au><au>Grillo, Luciano A. M.</au><au>Dornelas, Camila B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biogenic synthesis of silver nanoparticles using Brazilian propolis</atitle><jtitle>Biotechnology progress</jtitle><addtitle>Biotechnol Prog</addtitle><date>2019-11</date><risdate>2019</risdate><volume>35</volume><issue>6</issue><spage>e2888</spage><epage>n/a</epage><pages>e2888-n/a</pages><issn>8756-7938</issn><eissn>1520-6033</eissn><abstract>Biological methods have been used to synthesize silver nanoparticles through materials such as bacteria, fungi, plants, and propolis due to their reducing properties, stabilizer role and environmentally friendly characteristic. Considering the antimicrobial activity of propolis as well as the broad‐spectrum antibacterial effects of silver nanoparticles, this study aim to describe the use of Brazilian propolis to synthesize silver nanoparticles (AgNP‐P) and investigate its antimicrobial activity. The synthesis was optimized by factorial design, choosing the best conditions for smaller size particles. AgNP‐P demonstrated a maximum absorbance at 412 nm in ultraviolet‐visible spectra, which indicated a spherical format and its formation. Dynamic light scattering demonstrated a hydrodynamic size of 109 nm and polydispersity index less than 0.3, showing a good size distribution and stability. After its purification via centrifugation, microscopy analysis corroborates the format and showed the presence of propolis around silver nanoparticle. X‐ray diffraction peaks were attributed to the main planes of the metallic silver crystalline structure; meanwhile infrared spectroscopy demonstrated the main groups responsible for silver reduction, represented by ∼22% of AgNP‐P indicates by thermal analysis. Our product revealed an important antimicrobial activity indicating a synergism between propolis and silver nanoparticles as expected and promising to be an effective antimicrobial product to be used in infections.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>31353844</pmid><doi>10.1002/btpr.2888</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-2268-2650</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 8756-7938 |
ispartof | Biotechnology progress, 2019-11, Vol.35 (6), p.e2888-n/a |
issn | 8756-7938 1520-6033 |
language | eng |
recordid | cdi_proquest_miscellaneous_2266337160 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Antimicrobial activity Antimicrobial agents Bacteria biogenic synthesis Centrifugation Design optimization Factorial design Format Fungi Infrared spectroscopy Light scattering Nanoparticles Particle size distribution Photon correlation spectroscopy Polydispersity Propolis Purification Silver silver nanoparticles Size distribution Spectrum analysis Stability analysis Synergism Synthesis Thermal analysis Ultraviolet spectra |
title | Biogenic synthesis of silver nanoparticles using Brazilian propolis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T23%3A33%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biogenic%20synthesis%20of%20silver%20nanoparticles%20using%20Brazilian%20propolis&rft.jtitle=Biotechnology%20progress&rft.au=Barbosa,%20Valcilaine%20T.&rft.date=2019-11&rft.volume=35&rft.issue=6&rft.spage=e2888&rft.epage=n/a&rft.pages=e2888-n/a&rft.issn=8756-7938&rft.eissn=1520-6033&rft_id=info:doi/10.1002/btpr.2888&rft_dat=%3Cproquest_cross%3E2266337160%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2325693498&rft_id=info:pmid/31353844&rfr_iscdi=true |