Biogenic synthesis of silver nanoparticles using Brazilian propolis

Biological methods have been used to synthesize silver nanoparticles through materials such as bacteria, fungi, plants, and propolis due to their reducing properties, stabilizer role and environmentally friendly characteristic. Considering the antimicrobial activity of propolis as well as the broad‐...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biotechnology progress 2019-11, Vol.35 (6), p.e2888-n/a
Hauptverfasser: Barbosa, Valcilaine T., Souza, Joyelanne K. C., Alvino, Valter, Meneghetti, Mario R., Florez‐Rodriguez, Pedro P., Moreira, Rui E., Paulino, Gustavo V. B., Landell, Melissa F., Basílio‐Júnior, Irinaldo D., Nascimento, Ticiano G., Grillo, Luciano A. M., Dornelas, Camila B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 6
container_start_page e2888
container_title Biotechnology progress
container_volume 35
creator Barbosa, Valcilaine T.
Souza, Joyelanne K. C.
Alvino, Valter
Meneghetti, Mario R.
Florez‐Rodriguez, Pedro P.
Moreira, Rui E.
Paulino, Gustavo V. B.
Landell, Melissa F.
Basílio‐Júnior, Irinaldo D.
Nascimento, Ticiano G.
Grillo, Luciano A. M.
Dornelas, Camila B.
description Biological methods have been used to synthesize silver nanoparticles through materials such as bacteria, fungi, plants, and propolis due to their reducing properties, stabilizer role and environmentally friendly characteristic. Considering the antimicrobial activity of propolis as well as the broad‐spectrum antibacterial effects of silver nanoparticles, this study aim to describe the use of Brazilian propolis to synthesize silver nanoparticles (AgNP‐P) and investigate its antimicrobial activity. The synthesis was optimized by factorial design, choosing the best conditions for smaller size particles. AgNP‐P demonstrated a maximum absorbance at 412 nm in ultraviolet‐visible spectra, which indicated a spherical format and its formation. Dynamic light scattering demonstrated a hydrodynamic size of 109 nm and polydispersity index less than 0.3, showing a good size distribution and stability. After its purification via centrifugation, microscopy analysis corroborates the format and showed the presence of propolis around silver nanoparticle. X‐ray diffraction peaks were attributed to the main planes of the metallic silver crystalline structure; meanwhile infrared spectroscopy demonstrated the main groups responsible for silver reduction, represented by ∼22% of AgNP‐P indicates by thermal analysis. Our product revealed an important antimicrobial activity indicating a synergism between propolis and silver nanoparticles as expected and promising to be an effective antimicrobial product to be used in infections.
doi_str_mv 10.1002/btpr.2888
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2266337160</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2266337160</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3908-6a783df8ef712506cc8fb0e72aaef303e108f2b31d30d93269b3e2b3f77fb5b83</originalsourceid><addsrcrecordid>eNp1kM9LwzAUgIMobk4P_gNS8KKHuiRvTdKjG_6CgSLzHNI2mRldWpNWmX-9rZseBE_hwcf3Xj6ETgm-IhjTcdbU_ooKIfbQkCQUxwwD7KOh4AmLeQpigI5CWGGMBWb0EA2AQAJiMhmi2dRWS-1sHoWNa151sCGqTBRs-a595JSrauUbm5c6RG2wbhlNvfq0pVUuqn1VV6UNx-jAqDLok907Qi-3N4vZfTx_vHuYXc_jHFIsYqa4gMIIbTihCWZ5LkyGNadKaQMYNMHC0AxIAbhIgbI0A93NhnOTJZmAEbrYervFb60OjVzbkOuyVE5XbZCUMgbASff7ETr_g66q1rvuOkmBJiyFSdoLL7dU7qsQvDay9nat_EYSLPuysi8r-7Ide7YzttlaF7_kT8oOGG-BD1vqzf8mOV08PX8rvwCqF4ML</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2325693498</pqid></control><display><type>article</type><title>Biogenic synthesis of silver nanoparticles using Brazilian propolis</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Barbosa, Valcilaine T. ; Souza, Joyelanne K. C. ; Alvino, Valter ; Meneghetti, Mario R. ; Florez‐Rodriguez, Pedro P. ; Moreira, Rui E. ; Paulino, Gustavo V. B. ; Landell, Melissa F. ; Basílio‐Júnior, Irinaldo D. ; Nascimento, Ticiano G. ; Grillo, Luciano A. M. ; Dornelas, Camila B.</creator><creatorcontrib>Barbosa, Valcilaine T. ; Souza, Joyelanne K. C. ; Alvino, Valter ; Meneghetti, Mario R. ; Florez‐Rodriguez, Pedro P. ; Moreira, Rui E. ; Paulino, Gustavo V. B. ; Landell, Melissa F. ; Basílio‐Júnior, Irinaldo D. ; Nascimento, Ticiano G. ; Grillo, Luciano A. M. ; Dornelas, Camila B.</creatorcontrib><description>Biological methods have been used to synthesize silver nanoparticles through materials such as bacteria, fungi, plants, and propolis due to their reducing properties, stabilizer role and environmentally friendly characteristic. Considering the antimicrobial activity of propolis as well as the broad‐spectrum antibacterial effects of silver nanoparticles, this study aim to describe the use of Brazilian propolis to synthesize silver nanoparticles (AgNP‐P) and investigate its antimicrobial activity. The synthesis was optimized by factorial design, choosing the best conditions for smaller size particles. AgNP‐P demonstrated a maximum absorbance at 412 nm in ultraviolet‐visible spectra, which indicated a spherical format and its formation. Dynamic light scattering demonstrated a hydrodynamic size of 109 nm and polydispersity index less than 0.3, showing a good size distribution and stability. After its purification via centrifugation, microscopy analysis corroborates the format and showed the presence of propolis around silver nanoparticle. X‐ray diffraction peaks were attributed to the main planes of the metallic silver crystalline structure; meanwhile infrared spectroscopy demonstrated the main groups responsible for silver reduction, represented by ∼22% of AgNP‐P indicates by thermal analysis. Our product revealed an important antimicrobial activity indicating a synergism between propolis and silver nanoparticles as expected and promising to be an effective antimicrobial product to be used in infections.</description><identifier>ISSN: 8756-7938</identifier><identifier>EISSN: 1520-6033</identifier><identifier>DOI: 10.1002/btpr.2888</identifier><identifier>PMID: 31353844</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Antimicrobial activity ; Antimicrobial agents ; Bacteria ; biogenic synthesis ; Centrifugation ; Design optimization ; Factorial design ; Format ; Fungi ; Infrared spectroscopy ; Light scattering ; Nanoparticles ; Particle size distribution ; Photon correlation spectroscopy ; Polydispersity ; Propolis ; Purification ; Silver ; silver nanoparticles ; Size distribution ; Spectrum analysis ; Stability analysis ; Synergism ; Synthesis ; Thermal analysis ; Ultraviolet spectra</subject><ispartof>Biotechnology progress, 2019-11, Vol.35 (6), p.e2888-n/a</ispartof><rights>2019 American Institute of Chemical Engineers</rights><rights>2019 American Institute of Chemical Engineers.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3908-6a783df8ef712506cc8fb0e72aaef303e108f2b31d30d93269b3e2b3f77fb5b83</citedby><cites>FETCH-LOGICAL-c3908-6a783df8ef712506cc8fb0e72aaef303e108f2b31d30d93269b3e2b3f77fb5b83</cites><orcidid>0000-0002-2268-2650</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbtpr.2888$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbtpr.2888$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31353844$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Barbosa, Valcilaine T.</creatorcontrib><creatorcontrib>Souza, Joyelanne K. C.</creatorcontrib><creatorcontrib>Alvino, Valter</creatorcontrib><creatorcontrib>Meneghetti, Mario R.</creatorcontrib><creatorcontrib>Florez‐Rodriguez, Pedro P.</creatorcontrib><creatorcontrib>Moreira, Rui E.</creatorcontrib><creatorcontrib>Paulino, Gustavo V. B.</creatorcontrib><creatorcontrib>Landell, Melissa F.</creatorcontrib><creatorcontrib>Basílio‐Júnior, Irinaldo D.</creatorcontrib><creatorcontrib>Nascimento, Ticiano G.</creatorcontrib><creatorcontrib>Grillo, Luciano A. M.</creatorcontrib><creatorcontrib>Dornelas, Camila B.</creatorcontrib><title>Biogenic synthesis of silver nanoparticles using Brazilian propolis</title><title>Biotechnology progress</title><addtitle>Biotechnol Prog</addtitle><description>Biological methods have been used to synthesize silver nanoparticles through materials such as bacteria, fungi, plants, and propolis due to their reducing properties, stabilizer role and environmentally friendly characteristic. Considering the antimicrobial activity of propolis as well as the broad‐spectrum antibacterial effects of silver nanoparticles, this study aim to describe the use of Brazilian propolis to synthesize silver nanoparticles (AgNP‐P) and investigate its antimicrobial activity. The synthesis was optimized by factorial design, choosing the best conditions for smaller size particles. AgNP‐P demonstrated a maximum absorbance at 412 nm in ultraviolet‐visible spectra, which indicated a spherical format and its formation. Dynamic light scattering demonstrated a hydrodynamic size of 109 nm and polydispersity index less than 0.3, showing a good size distribution and stability. After its purification via centrifugation, microscopy analysis corroborates the format and showed the presence of propolis around silver nanoparticle. X‐ray diffraction peaks were attributed to the main planes of the metallic silver crystalline structure; meanwhile infrared spectroscopy demonstrated the main groups responsible for silver reduction, represented by ∼22% of AgNP‐P indicates by thermal analysis. Our product revealed an important antimicrobial activity indicating a synergism between propolis and silver nanoparticles as expected and promising to be an effective antimicrobial product to be used in infections.</description><subject>Antimicrobial activity</subject><subject>Antimicrobial agents</subject><subject>Bacteria</subject><subject>biogenic synthesis</subject><subject>Centrifugation</subject><subject>Design optimization</subject><subject>Factorial design</subject><subject>Format</subject><subject>Fungi</subject><subject>Infrared spectroscopy</subject><subject>Light scattering</subject><subject>Nanoparticles</subject><subject>Particle size distribution</subject><subject>Photon correlation spectroscopy</subject><subject>Polydispersity</subject><subject>Propolis</subject><subject>Purification</subject><subject>Silver</subject><subject>silver nanoparticles</subject><subject>Size distribution</subject><subject>Spectrum analysis</subject><subject>Stability analysis</subject><subject>Synergism</subject><subject>Synthesis</subject><subject>Thermal analysis</subject><subject>Ultraviolet spectra</subject><issn>8756-7938</issn><issn>1520-6033</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kM9LwzAUgIMobk4P_gNS8KKHuiRvTdKjG_6CgSLzHNI2mRldWpNWmX-9rZseBE_hwcf3Xj6ETgm-IhjTcdbU_ooKIfbQkCQUxwwD7KOh4AmLeQpigI5CWGGMBWb0EA2AQAJiMhmi2dRWS-1sHoWNa151sCGqTBRs-a595JSrauUbm5c6RG2wbhlNvfq0pVUuqn1VV6UNx-jAqDLok907Qi-3N4vZfTx_vHuYXc_jHFIsYqa4gMIIbTihCWZ5LkyGNadKaQMYNMHC0AxIAbhIgbI0A93NhnOTJZmAEbrYervFb60OjVzbkOuyVE5XbZCUMgbASff7ETr_g66q1rvuOkmBJiyFSdoLL7dU7qsQvDay9nat_EYSLPuysi8r-7Ide7YzttlaF7_kT8oOGG-BD1vqzf8mOV08PX8rvwCqF4ML</recordid><startdate>201911</startdate><enddate>201911</enddate><creator>Barbosa, Valcilaine T.</creator><creator>Souza, Joyelanne K. C.</creator><creator>Alvino, Valter</creator><creator>Meneghetti, Mario R.</creator><creator>Florez‐Rodriguez, Pedro P.</creator><creator>Moreira, Rui E.</creator><creator>Paulino, Gustavo V. B.</creator><creator>Landell, Melissa F.</creator><creator>Basílio‐Júnior, Irinaldo D.</creator><creator>Nascimento, Ticiano G.</creator><creator>Grillo, Luciano A. M.</creator><creator>Dornelas, Camila B.</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2268-2650</orcidid></search><sort><creationdate>201911</creationdate><title>Biogenic synthesis of silver nanoparticles using Brazilian propolis</title><author>Barbosa, Valcilaine T. ; Souza, Joyelanne K. C. ; Alvino, Valter ; Meneghetti, Mario R. ; Florez‐Rodriguez, Pedro P. ; Moreira, Rui E. ; Paulino, Gustavo V. B. ; Landell, Melissa F. ; Basílio‐Júnior, Irinaldo D. ; Nascimento, Ticiano G. ; Grillo, Luciano A. M. ; Dornelas, Camila B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3908-6a783df8ef712506cc8fb0e72aaef303e108f2b31d30d93269b3e2b3f77fb5b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Antimicrobial activity</topic><topic>Antimicrobial agents</topic><topic>Bacteria</topic><topic>biogenic synthesis</topic><topic>Centrifugation</topic><topic>Design optimization</topic><topic>Factorial design</topic><topic>Format</topic><topic>Fungi</topic><topic>Infrared spectroscopy</topic><topic>Light scattering</topic><topic>Nanoparticles</topic><topic>Particle size distribution</topic><topic>Photon correlation spectroscopy</topic><topic>Polydispersity</topic><topic>Propolis</topic><topic>Purification</topic><topic>Silver</topic><topic>silver nanoparticles</topic><topic>Size distribution</topic><topic>Spectrum analysis</topic><topic>Stability analysis</topic><topic>Synergism</topic><topic>Synthesis</topic><topic>Thermal analysis</topic><topic>Ultraviolet spectra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barbosa, Valcilaine T.</creatorcontrib><creatorcontrib>Souza, Joyelanne K. C.</creatorcontrib><creatorcontrib>Alvino, Valter</creatorcontrib><creatorcontrib>Meneghetti, Mario R.</creatorcontrib><creatorcontrib>Florez‐Rodriguez, Pedro P.</creatorcontrib><creatorcontrib>Moreira, Rui E.</creatorcontrib><creatorcontrib>Paulino, Gustavo V. B.</creatorcontrib><creatorcontrib>Landell, Melissa F.</creatorcontrib><creatorcontrib>Basílio‐Júnior, Irinaldo D.</creatorcontrib><creatorcontrib>Nascimento, Ticiano G.</creatorcontrib><creatorcontrib>Grillo, Luciano A. M.</creatorcontrib><creatorcontrib>Dornelas, Camila B.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology progress</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barbosa, Valcilaine T.</au><au>Souza, Joyelanne K. C.</au><au>Alvino, Valter</au><au>Meneghetti, Mario R.</au><au>Florez‐Rodriguez, Pedro P.</au><au>Moreira, Rui E.</au><au>Paulino, Gustavo V. B.</au><au>Landell, Melissa F.</au><au>Basílio‐Júnior, Irinaldo D.</au><au>Nascimento, Ticiano G.</au><au>Grillo, Luciano A. M.</au><au>Dornelas, Camila B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biogenic synthesis of silver nanoparticles using Brazilian propolis</atitle><jtitle>Biotechnology progress</jtitle><addtitle>Biotechnol Prog</addtitle><date>2019-11</date><risdate>2019</risdate><volume>35</volume><issue>6</issue><spage>e2888</spage><epage>n/a</epage><pages>e2888-n/a</pages><issn>8756-7938</issn><eissn>1520-6033</eissn><abstract>Biological methods have been used to synthesize silver nanoparticles through materials such as bacteria, fungi, plants, and propolis due to their reducing properties, stabilizer role and environmentally friendly characteristic. Considering the antimicrobial activity of propolis as well as the broad‐spectrum antibacterial effects of silver nanoparticles, this study aim to describe the use of Brazilian propolis to synthesize silver nanoparticles (AgNP‐P) and investigate its antimicrobial activity. The synthesis was optimized by factorial design, choosing the best conditions for smaller size particles. AgNP‐P demonstrated a maximum absorbance at 412 nm in ultraviolet‐visible spectra, which indicated a spherical format and its formation. Dynamic light scattering demonstrated a hydrodynamic size of 109 nm and polydispersity index less than 0.3, showing a good size distribution and stability. After its purification via centrifugation, microscopy analysis corroborates the format and showed the presence of propolis around silver nanoparticle. X‐ray diffraction peaks were attributed to the main planes of the metallic silver crystalline structure; meanwhile infrared spectroscopy demonstrated the main groups responsible for silver reduction, represented by ∼22% of AgNP‐P indicates by thermal analysis. Our product revealed an important antimicrobial activity indicating a synergism between propolis and silver nanoparticles as expected and promising to be an effective antimicrobial product to be used in infections.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>31353844</pmid><doi>10.1002/btpr.2888</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-2268-2650</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 8756-7938
ispartof Biotechnology progress, 2019-11, Vol.35 (6), p.e2888-n/a
issn 8756-7938
1520-6033
language eng
recordid cdi_proquest_miscellaneous_2266337160
source Wiley Online Library Journals Frontfile Complete
subjects Antimicrobial activity
Antimicrobial agents
Bacteria
biogenic synthesis
Centrifugation
Design optimization
Factorial design
Format
Fungi
Infrared spectroscopy
Light scattering
Nanoparticles
Particle size distribution
Photon correlation spectroscopy
Polydispersity
Propolis
Purification
Silver
silver nanoparticles
Size distribution
Spectrum analysis
Stability analysis
Synergism
Synthesis
Thermal analysis
Ultraviolet spectra
title Biogenic synthesis of silver nanoparticles using Brazilian propolis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T23%3A33%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biogenic%20synthesis%20of%20silver%20nanoparticles%20using%20Brazilian%20propolis&rft.jtitle=Biotechnology%20progress&rft.au=Barbosa,%20Valcilaine%20T.&rft.date=2019-11&rft.volume=35&rft.issue=6&rft.spage=e2888&rft.epage=n/a&rft.pages=e2888-n/a&rft.issn=8756-7938&rft.eissn=1520-6033&rft_id=info:doi/10.1002/btpr.2888&rft_dat=%3Cproquest_cross%3E2266337160%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2325693498&rft_id=info:pmid/31353844&rfr_iscdi=true