Perceptual-Aware Sketch Simplification Based on Integrated VGG Layers

Deep learning has been recently demonstrated as an effective tool for raster-based sketch simplification. Nevertheless, it remains challenging to simplify extremely rough sketches. We found that a simplification network trained with a simple loss, such as pixel loss or discriminator loss, may fail t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics 2021-01, Vol.27 (1), p.178-189
Hauptverfasser: Xu, Xuemiao, Xie, Minshan, Miao, Peiqi, Qu, Wei, Xiao, Wenpeng, Zhang, Huaidong, Liu, Xueting, Wong, Tien-Tsin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 189
container_issue 1
container_start_page 178
container_title IEEE transactions on visualization and computer graphics
container_volume 27
creator Xu, Xuemiao
Xie, Minshan
Miao, Peiqi
Qu, Wei
Xiao, Wenpeng
Zhang, Huaidong
Liu, Xueting
Wong, Tien-Tsin
description Deep learning has been recently demonstrated as an effective tool for raster-based sketch simplification. Nevertheless, it remains challenging to simplify extremely rough sketches. We found that a simplification network trained with a simple loss, such as pixel loss or discriminator loss, may fail to retain the semantically meaningful details when simplifying a very sketchy and complicated drawing. In this paper, we show that, with a well-designed multi-layer perceptual loss, we are able to obtain aesthetic and neat simplification results preserving semantically important global structures as well as fine details without blurriness and excessive emphasis on local structures. To do so, we design a multi-layer discriminator by fusing all VGG feature layers to differentiate sketches and clean lines. The weights used in layer fusing are automatically learned via an intelligent adjustment mechanism. Furthermore, to evaluate our method, we compare our method to state-of-the-art methods through multiple experiments, including visual comparison and intensive user study.
doi_str_mv 10.1109/TVCG.2019.2930512
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_2266333886</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8771128</ieee_id><sourcerecordid>2465439572</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-88ec81f93d2cd5e7f675aad7af1988103743aa3f84de22a6186c9a80e583ca813</originalsourceid><addsrcrecordid>eNpdkE1r20AQhpfSkDhpfkApBEEuucjd2e89OiZxA4YWkvq6TFejVolsubsSIf--MnZ9yGneYZ4Zhoexz8CnANx_fVrNF1PBwU-Fl1yD-MAm4BWUXHPzcczc2lIYYc7Yec7PnINSzp-yMwlSC6n0hN39oBRp2w_YlrNXTFQ8vlAf_xSPzXrbNnUTsW-6TXGLmapiDA-bnn4n7MdutVgUS3yjlD-xkxrbTJeHesF-3t89zb-Vy--Lh_lsWUapfF86R9FB7WUlYqXJ1sZqxMpiDd454NIqiShrpyoSAg04Ez06TtrJiA7kBbvZ392m7u9AuQ_rJkdqW9xQN-QghDFSSufMiF6_Q5-7IW3G74JQRivptRUjBXsqpi7nRHXYpmaN6S0ADzvHYec47ByHg-Nx5-pwefi1puq48V_qCHzZAw0RHcfOWgDh5D9xGn4e</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2465439572</pqid></control><display><type>article</type><title>Perceptual-Aware Sketch Simplification Based on Integrated VGG Layers</title><source>IEEE Electronic Library (IEL)</source><creator>Xu, Xuemiao ; Xie, Minshan ; Miao, Peiqi ; Qu, Wei ; Xiao, Wenpeng ; Zhang, Huaidong ; Liu, Xueting ; Wong, Tien-Tsin</creator><creatorcontrib>Xu, Xuemiao ; Xie, Minshan ; Miao, Peiqi ; Qu, Wei ; Xiao, Wenpeng ; Zhang, Huaidong ; Liu, Xueting ; Wong, Tien-Tsin</creatorcontrib><description>Deep learning has been recently demonstrated as an effective tool for raster-based sketch simplification. Nevertheless, it remains challenging to simplify extremely rough sketches. We found that a simplification network trained with a simple loss, such as pixel loss or discriminator loss, may fail to retain the semantically meaningful details when simplifying a very sketchy and complicated drawing. In this paper, we show that, with a well-designed multi-layer perceptual loss, we are able to obtain aesthetic and neat simplification results preserving semantically important global structures as well as fine details without blurriness and excessive emphasis on local structures. To do so, we design a multi-layer discriminator by fusing all VGG feature layers to differentiate sketches and clean lines. The weights used in layer fusing are automatically learned via an intelligent adjustment mechanism. Furthermore, to evaluate our method, we compare our method to state-of-the-art methods through multiple experiments, including visual comparison and intensive user study.</description><identifier>ISSN: 1077-2626</identifier><identifier>EISSN: 1941-0506</identifier><identifier>DOI: 10.1109/TVCG.2019.2930512</identifier><identifier>PMID: 31352345</identifier><identifier>CODEN: ITVGEA</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Convolutional neural network ; Feature extraction ; Generative adversarial networks ; Image segmentation ; Lighting ; Multilayers ; perceptual awareness ; Semantics ; Simplification ; sketch simplification ; Sketches ; Task analysis ; Visualization</subject><ispartof>IEEE transactions on visualization and computer graphics, 2021-01, Vol.27 (1), p.178-189</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-88ec81f93d2cd5e7f675aad7af1988103743aa3f84de22a6186c9a80e583ca813</citedby><cites>FETCH-LOGICAL-c349t-88ec81f93d2cd5e7f675aad7af1988103743aa3f84de22a6186c9a80e583ca813</cites><orcidid>0000-0002-8006-3663 ; 0000-0002-6288-1611</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8771128$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8771128$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31352345$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Xuemiao</creatorcontrib><creatorcontrib>Xie, Minshan</creatorcontrib><creatorcontrib>Miao, Peiqi</creatorcontrib><creatorcontrib>Qu, Wei</creatorcontrib><creatorcontrib>Xiao, Wenpeng</creatorcontrib><creatorcontrib>Zhang, Huaidong</creatorcontrib><creatorcontrib>Liu, Xueting</creatorcontrib><creatorcontrib>Wong, Tien-Tsin</creatorcontrib><title>Perceptual-Aware Sketch Simplification Based on Integrated VGG Layers</title><title>IEEE transactions on visualization and computer graphics</title><addtitle>TVCG</addtitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><description>Deep learning has been recently demonstrated as an effective tool for raster-based sketch simplification. Nevertheless, it remains challenging to simplify extremely rough sketches. We found that a simplification network trained with a simple loss, such as pixel loss or discriminator loss, may fail to retain the semantically meaningful details when simplifying a very sketchy and complicated drawing. In this paper, we show that, with a well-designed multi-layer perceptual loss, we are able to obtain aesthetic and neat simplification results preserving semantically important global structures as well as fine details without blurriness and excessive emphasis on local structures. To do so, we design a multi-layer discriminator by fusing all VGG feature layers to differentiate sketches and clean lines. The weights used in layer fusing are automatically learned via an intelligent adjustment mechanism. Furthermore, to evaluate our method, we compare our method to state-of-the-art methods through multiple experiments, including visual comparison and intensive user study.</description><subject>Convolutional neural network</subject><subject>Feature extraction</subject><subject>Generative adversarial networks</subject><subject>Image segmentation</subject><subject>Lighting</subject><subject>Multilayers</subject><subject>perceptual awareness</subject><subject>Semantics</subject><subject>Simplification</subject><subject>sketch simplification</subject><subject>Sketches</subject><subject>Task analysis</subject><subject>Visualization</subject><issn>1077-2626</issn><issn>1941-0506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1r20AQhpfSkDhpfkApBEEuucjd2e89OiZxA4YWkvq6TFejVolsubsSIf--MnZ9yGneYZ4Zhoexz8CnANx_fVrNF1PBwU-Fl1yD-MAm4BWUXHPzcczc2lIYYc7Yec7PnINSzp-yMwlSC6n0hN39oBRp2w_YlrNXTFQ8vlAf_xSPzXrbNnUTsW-6TXGLmapiDA-bnn4n7MdutVgUS3yjlD-xkxrbTJeHesF-3t89zb-Vy--Lh_lsWUapfF86R9FB7WUlYqXJ1sZqxMpiDd454NIqiShrpyoSAg04Ez06TtrJiA7kBbvZ392m7u9AuQ_rJkdqW9xQN-QghDFSSufMiF6_Q5-7IW3G74JQRivptRUjBXsqpi7nRHXYpmaN6S0ADzvHYec47ByHg-Nx5-pwefi1puq48V_qCHzZAw0RHcfOWgDh5D9xGn4e</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Xu, Xuemiao</creator><creator>Xie, Minshan</creator><creator>Miao, Peiqi</creator><creator>Qu, Wei</creator><creator>Xiao, Wenpeng</creator><creator>Zhang, Huaidong</creator><creator>Liu, Xueting</creator><creator>Wong, Tien-Tsin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8006-3663</orcidid><orcidid>https://orcid.org/0000-0002-6288-1611</orcidid></search><sort><creationdate>20210101</creationdate><title>Perceptual-Aware Sketch Simplification Based on Integrated VGG Layers</title><author>Xu, Xuemiao ; Xie, Minshan ; Miao, Peiqi ; Qu, Wei ; Xiao, Wenpeng ; Zhang, Huaidong ; Liu, Xueting ; Wong, Tien-Tsin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-88ec81f93d2cd5e7f675aad7af1988103743aa3f84de22a6186c9a80e583ca813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Convolutional neural network</topic><topic>Feature extraction</topic><topic>Generative adversarial networks</topic><topic>Image segmentation</topic><topic>Lighting</topic><topic>Multilayers</topic><topic>perceptual awareness</topic><topic>Semantics</topic><topic>Simplification</topic><topic>sketch simplification</topic><topic>Sketches</topic><topic>Task analysis</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Xuemiao</creatorcontrib><creatorcontrib>Xie, Minshan</creatorcontrib><creatorcontrib>Miao, Peiqi</creatorcontrib><creatorcontrib>Qu, Wei</creatorcontrib><creatorcontrib>Xiao, Wenpeng</creatorcontrib><creatorcontrib>Zhang, Huaidong</creatorcontrib><creatorcontrib>Liu, Xueting</creatorcontrib><creatorcontrib>Wong, Tien-Tsin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on visualization and computer graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xu, Xuemiao</au><au>Xie, Minshan</au><au>Miao, Peiqi</au><au>Qu, Wei</au><au>Xiao, Wenpeng</au><au>Zhang, Huaidong</au><au>Liu, Xueting</au><au>Wong, Tien-Tsin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Perceptual-Aware Sketch Simplification Based on Integrated VGG Layers</atitle><jtitle>IEEE transactions on visualization and computer graphics</jtitle><stitle>TVCG</stitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><date>2021-01-01</date><risdate>2021</risdate><volume>27</volume><issue>1</issue><spage>178</spage><epage>189</epage><pages>178-189</pages><issn>1077-2626</issn><eissn>1941-0506</eissn><coden>ITVGEA</coden><abstract>Deep learning has been recently demonstrated as an effective tool for raster-based sketch simplification. Nevertheless, it remains challenging to simplify extremely rough sketches. We found that a simplification network trained with a simple loss, such as pixel loss or discriminator loss, may fail to retain the semantically meaningful details when simplifying a very sketchy and complicated drawing. In this paper, we show that, with a well-designed multi-layer perceptual loss, we are able to obtain aesthetic and neat simplification results preserving semantically important global structures as well as fine details without blurriness and excessive emphasis on local structures. To do so, we design a multi-layer discriminator by fusing all VGG feature layers to differentiate sketches and clean lines. The weights used in layer fusing are automatically learned via an intelligent adjustment mechanism. Furthermore, to evaluate our method, we compare our method to state-of-the-art methods through multiple experiments, including visual comparison and intensive user study.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>31352345</pmid><doi>10.1109/TVCG.2019.2930512</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-8006-3663</orcidid><orcidid>https://orcid.org/0000-0002-6288-1611</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1077-2626
ispartof IEEE transactions on visualization and computer graphics, 2021-01, Vol.27 (1), p.178-189
issn 1077-2626
1941-0506
language eng
recordid cdi_proquest_miscellaneous_2266333886
source IEEE Electronic Library (IEL)
subjects Convolutional neural network
Feature extraction
Generative adversarial networks
Image segmentation
Lighting
Multilayers
perceptual awareness
Semantics
Simplification
sketch simplification
Sketches
Task analysis
Visualization
title Perceptual-Aware Sketch Simplification Based on Integrated VGG Layers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T13%3A17%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Perceptual-Aware%20Sketch%20Simplification%20Based%20on%20Integrated%20VGG%20Layers&rft.jtitle=IEEE%20transactions%20on%20visualization%20and%20computer%20graphics&rft.au=Xu,%20Xuemiao&rft.date=2021-01-01&rft.volume=27&rft.issue=1&rft.spage=178&rft.epage=189&rft.pages=178-189&rft.issn=1077-2626&rft.eissn=1941-0506&rft.coden=ITVGEA&rft_id=info:doi/10.1109/TVCG.2019.2930512&rft_dat=%3Cproquest_RIE%3E2465439572%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2465439572&rft_id=info:pmid/31352345&rft_ieee_id=8771128&rfr_iscdi=true