Perceptual-Aware Sketch Simplification Based on Integrated VGG Layers
Deep learning has been recently demonstrated as an effective tool for raster-based sketch simplification. Nevertheless, it remains challenging to simplify extremely rough sketches. We found that a simplification network trained with a simple loss, such as pixel loss or discriminator loss, may fail t...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on visualization and computer graphics 2021-01, Vol.27 (1), p.178-189 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 189 |
---|---|
container_issue | 1 |
container_start_page | 178 |
container_title | IEEE transactions on visualization and computer graphics |
container_volume | 27 |
creator | Xu, Xuemiao Xie, Minshan Miao, Peiqi Qu, Wei Xiao, Wenpeng Zhang, Huaidong Liu, Xueting Wong, Tien-Tsin |
description | Deep learning has been recently demonstrated as an effective tool for raster-based sketch simplification. Nevertheless, it remains challenging to simplify extremely rough sketches. We found that a simplification network trained with a simple loss, such as pixel loss or discriminator loss, may fail to retain the semantically meaningful details when simplifying a very sketchy and complicated drawing. In this paper, we show that, with a well-designed multi-layer perceptual loss, we are able to obtain aesthetic and neat simplification results preserving semantically important global structures as well as fine details without blurriness and excessive emphasis on local structures. To do so, we design a multi-layer discriminator by fusing all VGG feature layers to differentiate sketches and clean lines. The weights used in layer fusing are automatically learned via an intelligent adjustment mechanism. Furthermore, to evaluate our method, we compare our method to state-of-the-art methods through multiple experiments, including visual comparison and intensive user study. |
doi_str_mv | 10.1109/TVCG.2019.2930512 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_2266333886</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8771128</ieee_id><sourcerecordid>2465439572</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-88ec81f93d2cd5e7f675aad7af1988103743aa3f84de22a6186c9a80e583ca813</originalsourceid><addsrcrecordid>eNpdkE1r20AQhpfSkDhpfkApBEEuucjd2e89OiZxA4YWkvq6TFejVolsubsSIf--MnZ9yGneYZ4Zhoexz8CnANx_fVrNF1PBwU-Fl1yD-MAm4BWUXHPzcczc2lIYYc7Yec7PnINSzp-yMwlSC6n0hN39oBRp2w_YlrNXTFQ8vlAf_xSPzXrbNnUTsW-6TXGLmapiDA-bnn4n7MdutVgUS3yjlD-xkxrbTJeHesF-3t89zb-Vy--Lh_lsWUapfF86R9FB7WUlYqXJ1sZqxMpiDd454NIqiShrpyoSAg04Ez06TtrJiA7kBbvZ392m7u9AuQ_rJkdqW9xQN-QghDFSSufMiF6_Q5-7IW3G74JQRivptRUjBXsqpi7nRHXYpmaN6S0ADzvHYec47ByHg-Nx5-pwefi1puq48V_qCHzZAw0RHcfOWgDh5D9xGn4e</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2465439572</pqid></control><display><type>article</type><title>Perceptual-Aware Sketch Simplification Based on Integrated VGG Layers</title><source>IEEE Electronic Library (IEL)</source><creator>Xu, Xuemiao ; Xie, Minshan ; Miao, Peiqi ; Qu, Wei ; Xiao, Wenpeng ; Zhang, Huaidong ; Liu, Xueting ; Wong, Tien-Tsin</creator><creatorcontrib>Xu, Xuemiao ; Xie, Minshan ; Miao, Peiqi ; Qu, Wei ; Xiao, Wenpeng ; Zhang, Huaidong ; Liu, Xueting ; Wong, Tien-Tsin</creatorcontrib><description>Deep learning has been recently demonstrated as an effective tool for raster-based sketch simplification. Nevertheless, it remains challenging to simplify extremely rough sketches. We found that a simplification network trained with a simple loss, such as pixel loss or discriminator loss, may fail to retain the semantically meaningful details when simplifying a very sketchy and complicated drawing. In this paper, we show that, with a well-designed multi-layer perceptual loss, we are able to obtain aesthetic and neat simplification results preserving semantically important global structures as well as fine details without blurriness and excessive emphasis on local structures. To do so, we design a multi-layer discriminator by fusing all VGG feature layers to differentiate sketches and clean lines. The weights used in layer fusing are automatically learned via an intelligent adjustment mechanism. Furthermore, to evaluate our method, we compare our method to state-of-the-art methods through multiple experiments, including visual comparison and intensive user study.</description><identifier>ISSN: 1077-2626</identifier><identifier>EISSN: 1941-0506</identifier><identifier>DOI: 10.1109/TVCG.2019.2930512</identifier><identifier>PMID: 31352345</identifier><identifier>CODEN: ITVGEA</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Convolutional neural network ; Feature extraction ; Generative adversarial networks ; Image segmentation ; Lighting ; Multilayers ; perceptual awareness ; Semantics ; Simplification ; sketch simplification ; Sketches ; Task analysis ; Visualization</subject><ispartof>IEEE transactions on visualization and computer graphics, 2021-01, Vol.27 (1), p.178-189</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-88ec81f93d2cd5e7f675aad7af1988103743aa3f84de22a6186c9a80e583ca813</citedby><cites>FETCH-LOGICAL-c349t-88ec81f93d2cd5e7f675aad7af1988103743aa3f84de22a6186c9a80e583ca813</cites><orcidid>0000-0002-8006-3663 ; 0000-0002-6288-1611</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8771128$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8771128$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31352345$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Xuemiao</creatorcontrib><creatorcontrib>Xie, Minshan</creatorcontrib><creatorcontrib>Miao, Peiqi</creatorcontrib><creatorcontrib>Qu, Wei</creatorcontrib><creatorcontrib>Xiao, Wenpeng</creatorcontrib><creatorcontrib>Zhang, Huaidong</creatorcontrib><creatorcontrib>Liu, Xueting</creatorcontrib><creatorcontrib>Wong, Tien-Tsin</creatorcontrib><title>Perceptual-Aware Sketch Simplification Based on Integrated VGG Layers</title><title>IEEE transactions on visualization and computer graphics</title><addtitle>TVCG</addtitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><description>Deep learning has been recently demonstrated as an effective tool for raster-based sketch simplification. Nevertheless, it remains challenging to simplify extremely rough sketches. We found that a simplification network trained with a simple loss, such as pixel loss or discriminator loss, may fail to retain the semantically meaningful details when simplifying a very sketchy and complicated drawing. In this paper, we show that, with a well-designed multi-layer perceptual loss, we are able to obtain aesthetic and neat simplification results preserving semantically important global structures as well as fine details without blurriness and excessive emphasis on local structures. To do so, we design a multi-layer discriminator by fusing all VGG feature layers to differentiate sketches and clean lines. The weights used in layer fusing are automatically learned via an intelligent adjustment mechanism. Furthermore, to evaluate our method, we compare our method to state-of-the-art methods through multiple experiments, including visual comparison and intensive user study.</description><subject>Convolutional neural network</subject><subject>Feature extraction</subject><subject>Generative adversarial networks</subject><subject>Image segmentation</subject><subject>Lighting</subject><subject>Multilayers</subject><subject>perceptual awareness</subject><subject>Semantics</subject><subject>Simplification</subject><subject>sketch simplification</subject><subject>Sketches</subject><subject>Task analysis</subject><subject>Visualization</subject><issn>1077-2626</issn><issn>1941-0506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1r20AQhpfSkDhpfkApBEEuucjd2e89OiZxA4YWkvq6TFejVolsubsSIf--MnZ9yGneYZ4Zhoexz8CnANx_fVrNF1PBwU-Fl1yD-MAm4BWUXHPzcczc2lIYYc7Yec7PnINSzp-yMwlSC6n0hN39oBRp2w_YlrNXTFQ8vlAf_xSPzXrbNnUTsW-6TXGLmapiDA-bnn4n7MdutVgUS3yjlD-xkxrbTJeHesF-3t89zb-Vy--Lh_lsWUapfF86R9FB7WUlYqXJ1sZqxMpiDd454NIqiShrpyoSAg04Ez06TtrJiA7kBbvZ392m7u9AuQ_rJkdqW9xQN-QghDFSSufMiF6_Q5-7IW3G74JQRivptRUjBXsqpi7nRHXYpmaN6S0ADzvHYec47ByHg-Nx5-pwefi1puq48V_qCHzZAw0RHcfOWgDh5D9xGn4e</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Xu, Xuemiao</creator><creator>Xie, Minshan</creator><creator>Miao, Peiqi</creator><creator>Qu, Wei</creator><creator>Xiao, Wenpeng</creator><creator>Zhang, Huaidong</creator><creator>Liu, Xueting</creator><creator>Wong, Tien-Tsin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8006-3663</orcidid><orcidid>https://orcid.org/0000-0002-6288-1611</orcidid></search><sort><creationdate>20210101</creationdate><title>Perceptual-Aware Sketch Simplification Based on Integrated VGG Layers</title><author>Xu, Xuemiao ; Xie, Minshan ; Miao, Peiqi ; Qu, Wei ; Xiao, Wenpeng ; Zhang, Huaidong ; Liu, Xueting ; Wong, Tien-Tsin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-88ec81f93d2cd5e7f675aad7af1988103743aa3f84de22a6186c9a80e583ca813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Convolutional neural network</topic><topic>Feature extraction</topic><topic>Generative adversarial networks</topic><topic>Image segmentation</topic><topic>Lighting</topic><topic>Multilayers</topic><topic>perceptual awareness</topic><topic>Semantics</topic><topic>Simplification</topic><topic>sketch simplification</topic><topic>Sketches</topic><topic>Task analysis</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Xuemiao</creatorcontrib><creatorcontrib>Xie, Minshan</creatorcontrib><creatorcontrib>Miao, Peiqi</creatorcontrib><creatorcontrib>Qu, Wei</creatorcontrib><creatorcontrib>Xiao, Wenpeng</creatorcontrib><creatorcontrib>Zhang, Huaidong</creatorcontrib><creatorcontrib>Liu, Xueting</creatorcontrib><creatorcontrib>Wong, Tien-Tsin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on visualization and computer graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xu, Xuemiao</au><au>Xie, Minshan</au><au>Miao, Peiqi</au><au>Qu, Wei</au><au>Xiao, Wenpeng</au><au>Zhang, Huaidong</au><au>Liu, Xueting</au><au>Wong, Tien-Tsin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Perceptual-Aware Sketch Simplification Based on Integrated VGG Layers</atitle><jtitle>IEEE transactions on visualization and computer graphics</jtitle><stitle>TVCG</stitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><date>2021-01-01</date><risdate>2021</risdate><volume>27</volume><issue>1</issue><spage>178</spage><epage>189</epage><pages>178-189</pages><issn>1077-2626</issn><eissn>1941-0506</eissn><coden>ITVGEA</coden><abstract>Deep learning has been recently demonstrated as an effective tool for raster-based sketch simplification. Nevertheless, it remains challenging to simplify extremely rough sketches. We found that a simplification network trained with a simple loss, such as pixel loss or discriminator loss, may fail to retain the semantically meaningful details when simplifying a very sketchy and complicated drawing. In this paper, we show that, with a well-designed multi-layer perceptual loss, we are able to obtain aesthetic and neat simplification results preserving semantically important global structures as well as fine details without blurriness and excessive emphasis on local structures. To do so, we design a multi-layer discriminator by fusing all VGG feature layers to differentiate sketches and clean lines. The weights used in layer fusing are automatically learned via an intelligent adjustment mechanism. Furthermore, to evaluate our method, we compare our method to state-of-the-art methods through multiple experiments, including visual comparison and intensive user study.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>31352345</pmid><doi>10.1109/TVCG.2019.2930512</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-8006-3663</orcidid><orcidid>https://orcid.org/0000-0002-6288-1611</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1077-2626 |
ispartof | IEEE transactions on visualization and computer graphics, 2021-01, Vol.27 (1), p.178-189 |
issn | 1077-2626 1941-0506 |
language | eng |
recordid | cdi_proquest_miscellaneous_2266333886 |
source | IEEE Electronic Library (IEL) |
subjects | Convolutional neural network Feature extraction Generative adversarial networks Image segmentation Lighting Multilayers perceptual awareness Semantics Simplification sketch simplification Sketches Task analysis Visualization |
title | Perceptual-Aware Sketch Simplification Based on Integrated VGG Layers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T13%3A17%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Perceptual-Aware%20Sketch%20Simplification%20Based%20on%20Integrated%20VGG%20Layers&rft.jtitle=IEEE%20transactions%20on%20visualization%20and%20computer%20graphics&rft.au=Xu,%20Xuemiao&rft.date=2021-01-01&rft.volume=27&rft.issue=1&rft.spage=178&rft.epage=189&rft.pages=178-189&rft.issn=1077-2626&rft.eissn=1941-0506&rft.coden=ITVGEA&rft_id=info:doi/10.1109/TVCG.2019.2930512&rft_dat=%3Cproquest_RIE%3E2465439572%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2465439572&rft_id=info:pmid/31352345&rft_ieee_id=8771128&rfr_iscdi=true |