Intrinsic Conductance of Domain Walls in BiFeO3
Ferroelectric domain walls exhibit a number of new functionalities that are not present in their host material. One of these functional characteristics is electrical conductivity that may lead to future device applications. Although progress has been made, the intrinsic conductivity of BiFeO3 domain...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2019-09, Vol.31 (36), p.e1902099-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 36 |
container_start_page | e1902099 |
container_title | Advanced materials (Weinheim) |
container_volume | 31 |
creator | Zhang, Yi Lu, Haidong Yan, Xingxu Cheng, Xiaoxing Xie, Lin Aoki, Toshihiro Li, Linze Heikes, Colin Lau, Shu Ping Schlom, Darrell G. Chen, Longqing Gruverman, Alexei Pan, Xiaoqing |
description | Ferroelectric domain walls exhibit a number of new functionalities that are not present in their host material. One of these functional characteristics is electrical conductivity that may lead to future device applications. Although progress has been made, the intrinsic conductivity of BiFeO3 domain walls is still elusive. Here, the intrinsic conductivity of 71° and 109° domain walls is reported by probing the local conductance over a cross section of the BiFeO3/TbScO3 (001) heterostructure. Through a combination of conductive atomic force microscopy, high‐resolution electron energy loss spectroscopy, and phase‐field simulations, it is found that the 71° domain wall has an inherently charged nature, while the 109° domain wall is close to neutral. Hence, the intrinsic conductivity of the 71° domain walls is an order of magnitude larger than that of the 109° domain walls associated with bound‐charge‐induced bandgap lowering. Furthermore, the interaction of adjacent 71° domain walls and domain wall curvature leads to a variation of the charge distribution inside the walls, and causes a discontinuity of potential in the [110]p direction, which results in an alternative conductivity of the neighboring 71° domain walls, and a low conductivity of the 71° domain walls when measurement is taken from the film top surface.
The distinct intrinsic conductivity of the 71° and 109° domain walls in BiFeO3
is revealed by using a combination of local probe techniques. It is found that the intrinsic conductivity of the 71° domain walls is an order of magnitude larger than that of the 109° domain walls. Atomic resolution electron energy loss spectroscopy (EELS) analysis and phase‐field simulation demonstrate clear bandgap lowering and the weakly charged nature of the 71° domain walls, while a small bandgap change is observed at the 109° walls. |
doi_str_mv | 10.1002/adma.201902099 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_2266333520</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2283244880</sourcerecordid><originalsourceid>FETCH-LOGICAL-j3729-820d5897a10a72f604cec43a6396e411a35e5b0893bbd174c66d31ea393d19093</originalsourceid><addsrcrecordid>eNpdkEFLAzEQRoMoWKtXzwtevGw7ySTZ5Fhbq4VKL4rHkGZTSNnN1k0X6b_vlkoPnmYGHsP3PUIeKYwoABvbsrYjBlQDA62vyIAKRnMOWlyTAWgUuZZc3ZK7lLYAoCXIARkv4r4NMQWXTZtYdm5vo_NZs8lmTW1DzL5tVaWsX17C3K_wntxsbJX8w98ckq_56-f0PV-u3hbTyTLfYsF0rhiUQunCUrAF20jgzjuOVqKWnlNqUXixBqVxvS5pwZ2UJVJvUWPZF9A4JM_nv7u2-el82ps6JOerykbfdMkwJiUiCgY9-vQP3TZdG_t0PaWQca7UidJn6jdU_mB2bahtezAUzEmeOckzF3lmMvuYXC48AhOeYZA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2283244880</pqid></control><display><type>article</type><title>Intrinsic Conductance of Domain Walls in BiFeO3</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhang, Yi ; Lu, Haidong ; Yan, Xingxu ; Cheng, Xiaoxing ; Xie, Lin ; Aoki, Toshihiro ; Li, Linze ; Heikes, Colin ; Lau, Shu Ping ; Schlom, Darrell G. ; Chen, Longqing ; Gruverman, Alexei ; Pan, Xiaoqing</creator><creatorcontrib>Zhang, Yi ; Lu, Haidong ; Yan, Xingxu ; Cheng, Xiaoxing ; Xie, Lin ; Aoki, Toshihiro ; Li, Linze ; Heikes, Colin ; Lau, Shu Ping ; Schlom, Darrell G. ; Chen, Longqing ; Gruverman, Alexei ; Pan, Xiaoqing</creatorcontrib><description>Ferroelectric domain walls exhibit a number of new functionalities that are not present in their host material. One of these functional characteristics is electrical conductivity that may lead to future device applications. Although progress has been made, the intrinsic conductivity of BiFeO3 domain walls is still elusive. Here, the intrinsic conductivity of 71° and 109° domain walls is reported by probing the local conductance over a cross section of the BiFeO3/TbScO3 (001) heterostructure. Through a combination of conductive atomic force microscopy, high‐resolution electron energy loss spectroscopy, and phase‐field simulations, it is found that the 71° domain wall has an inherently charged nature, while the 109° domain wall is close to neutral. Hence, the intrinsic conductivity of the 71° domain walls is an order of magnitude larger than that of the 109° domain walls associated with bound‐charge‐induced bandgap lowering. Furthermore, the interaction of adjacent 71° domain walls and domain wall curvature leads to a variation of the charge distribution inside the walls, and causes a discontinuity of potential in the [110]p direction, which results in an alternative conductivity of the neighboring 71° domain walls, and a low conductivity of the 71° domain walls when measurement is taken from the film top surface.
The distinct intrinsic conductivity of the 71° and 109° domain walls in BiFeO3
is revealed by using a combination of local probe techniques. It is found that the intrinsic conductivity of the 71° domain walls is an order of magnitude larger than that of the 109° domain walls. Atomic resolution electron energy loss spectroscopy (EELS) analysis and phase‐field simulation demonstrate clear bandgap lowering and the weakly charged nature of the 71° domain walls, while a small bandgap change is observed at the 109° walls.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.201902099</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Atomic force microscopy ; Bismuth ferrite ; Charge distribution ; conductive atomic force microscopy ; Curvature ; Domain walls ; Electrical resistivity ; Electron energy loss spectroscopy ; Energy dissipation ; Ferroelectric domains ; ferroelectric films ; Ferroelectric materials ; Ferroelectricity ; Heterostructures ; intrinsic conductance ; Low conductivity ; Magnetism ; piezoresponse force microscopy ; Resistance</subject><ispartof>Advanced materials (Weinheim), 2019-09, Vol.31 (36), p.e1902099-n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-8221-1033</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.201902099$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.201902099$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Zhang, Yi</creatorcontrib><creatorcontrib>Lu, Haidong</creatorcontrib><creatorcontrib>Yan, Xingxu</creatorcontrib><creatorcontrib>Cheng, Xiaoxing</creatorcontrib><creatorcontrib>Xie, Lin</creatorcontrib><creatorcontrib>Aoki, Toshihiro</creatorcontrib><creatorcontrib>Li, Linze</creatorcontrib><creatorcontrib>Heikes, Colin</creatorcontrib><creatorcontrib>Lau, Shu Ping</creatorcontrib><creatorcontrib>Schlom, Darrell G.</creatorcontrib><creatorcontrib>Chen, Longqing</creatorcontrib><creatorcontrib>Gruverman, Alexei</creatorcontrib><creatorcontrib>Pan, Xiaoqing</creatorcontrib><title>Intrinsic Conductance of Domain Walls in BiFeO3</title><title>Advanced materials (Weinheim)</title><description>Ferroelectric domain walls exhibit a number of new functionalities that are not present in their host material. One of these functional characteristics is electrical conductivity that may lead to future device applications. Although progress has been made, the intrinsic conductivity of BiFeO3 domain walls is still elusive. Here, the intrinsic conductivity of 71° and 109° domain walls is reported by probing the local conductance over a cross section of the BiFeO3/TbScO3 (001) heterostructure. Through a combination of conductive atomic force microscopy, high‐resolution electron energy loss spectroscopy, and phase‐field simulations, it is found that the 71° domain wall has an inherently charged nature, while the 109° domain wall is close to neutral. Hence, the intrinsic conductivity of the 71° domain walls is an order of magnitude larger than that of the 109° domain walls associated with bound‐charge‐induced bandgap lowering. Furthermore, the interaction of adjacent 71° domain walls and domain wall curvature leads to a variation of the charge distribution inside the walls, and causes a discontinuity of potential in the [110]p direction, which results in an alternative conductivity of the neighboring 71° domain walls, and a low conductivity of the 71° domain walls when measurement is taken from the film top surface.
The distinct intrinsic conductivity of the 71° and 109° domain walls in BiFeO3
is revealed by using a combination of local probe techniques. It is found that the intrinsic conductivity of the 71° domain walls is an order of magnitude larger than that of the 109° domain walls. Atomic resolution electron energy loss spectroscopy (EELS) analysis and phase‐field simulation demonstrate clear bandgap lowering and the weakly charged nature of the 71° domain walls, while a small bandgap change is observed at the 109° walls.</description><subject>Atomic force microscopy</subject><subject>Bismuth ferrite</subject><subject>Charge distribution</subject><subject>conductive atomic force microscopy</subject><subject>Curvature</subject><subject>Domain walls</subject><subject>Electrical resistivity</subject><subject>Electron energy loss spectroscopy</subject><subject>Energy dissipation</subject><subject>Ferroelectric domains</subject><subject>ferroelectric films</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>Heterostructures</subject><subject>intrinsic conductance</subject><subject>Low conductivity</subject><subject>Magnetism</subject><subject>piezoresponse force microscopy</subject><subject>Resistance</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkEFLAzEQRoMoWKtXzwtevGw7ySTZ5Fhbq4VKL4rHkGZTSNnN1k0X6b_vlkoPnmYGHsP3PUIeKYwoABvbsrYjBlQDA62vyIAKRnMOWlyTAWgUuZZc3ZK7lLYAoCXIARkv4r4NMQWXTZtYdm5vo_NZs8lmTW1DzL5tVaWsX17C3K_wntxsbJX8w98ckq_56-f0PV-u3hbTyTLfYsF0rhiUQunCUrAF20jgzjuOVqKWnlNqUXixBqVxvS5pwZ2UJVJvUWPZF9A4JM_nv7u2-el82ps6JOerykbfdMkwJiUiCgY9-vQP3TZdG_t0PaWQca7UidJn6jdU_mB2bahtezAUzEmeOckzF3lmMvuYXC48AhOeYZA</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Zhang, Yi</creator><creator>Lu, Haidong</creator><creator>Yan, Xingxu</creator><creator>Cheng, Xiaoxing</creator><creator>Xie, Lin</creator><creator>Aoki, Toshihiro</creator><creator>Li, Linze</creator><creator>Heikes, Colin</creator><creator>Lau, Shu Ping</creator><creator>Schlom, Darrell G.</creator><creator>Chen, Longqing</creator><creator>Gruverman, Alexei</creator><creator>Pan, Xiaoqing</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8221-1033</orcidid></search><sort><creationdate>20190901</creationdate><title>Intrinsic Conductance of Domain Walls in BiFeO3</title><author>Zhang, Yi ; Lu, Haidong ; Yan, Xingxu ; Cheng, Xiaoxing ; Xie, Lin ; Aoki, Toshihiro ; Li, Linze ; Heikes, Colin ; Lau, Shu Ping ; Schlom, Darrell G. ; Chen, Longqing ; Gruverman, Alexei ; Pan, Xiaoqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j3729-820d5897a10a72f604cec43a6396e411a35e5b0893bbd174c66d31ea393d19093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Atomic force microscopy</topic><topic>Bismuth ferrite</topic><topic>Charge distribution</topic><topic>conductive atomic force microscopy</topic><topic>Curvature</topic><topic>Domain walls</topic><topic>Electrical resistivity</topic><topic>Electron energy loss spectroscopy</topic><topic>Energy dissipation</topic><topic>Ferroelectric domains</topic><topic>ferroelectric films</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>Heterostructures</topic><topic>intrinsic conductance</topic><topic>Low conductivity</topic><topic>Magnetism</topic><topic>piezoresponse force microscopy</topic><topic>Resistance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yi</creatorcontrib><creatorcontrib>Lu, Haidong</creatorcontrib><creatorcontrib>Yan, Xingxu</creatorcontrib><creatorcontrib>Cheng, Xiaoxing</creatorcontrib><creatorcontrib>Xie, Lin</creatorcontrib><creatorcontrib>Aoki, Toshihiro</creatorcontrib><creatorcontrib>Li, Linze</creatorcontrib><creatorcontrib>Heikes, Colin</creatorcontrib><creatorcontrib>Lau, Shu Ping</creatorcontrib><creatorcontrib>Schlom, Darrell G.</creatorcontrib><creatorcontrib>Chen, Longqing</creatorcontrib><creatorcontrib>Gruverman, Alexei</creatorcontrib><creatorcontrib>Pan, Xiaoqing</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yi</au><au>Lu, Haidong</au><au>Yan, Xingxu</au><au>Cheng, Xiaoxing</au><au>Xie, Lin</au><au>Aoki, Toshihiro</au><au>Li, Linze</au><au>Heikes, Colin</au><au>Lau, Shu Ping</au><au>Schlom, Darrell G.</au><au>Chen, Longqing</au><au>Gruverman, Alexei</au><au>Pan, Xiaoqing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intrinsic Conductance of Domain Walls in BiFeO3</atitle><jtitle>Advanced materials (Weinheim)</jtitle><date>2019-09-01</date><risdate>2019</risdate><volume>31</volume><issue>36</issue><spage>e1902099</spage><epage>n/a</epage><pages>e1902099-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Ferroelectric domain walls exhibit a number of new functionalities that are not present in their host material. One of these functional characteristics is electrical conductivity that may lead to future device applications. Although progress has been made, the intrinsic conductivity of BiFeO3 domain walls is still elusive. Here, the intrinsic conductivity of 71° and 109° domain walls is reported by probing the local conductance over a cross section of the BiFeO3/TbScO3 (001) heterostructure. Through a combination of conductive atomic force microscopy, high‐resolution electron energy loss spectroscopy, and phase‐field simulations, it is found that the 71° domain wall has an inherently charged nature, while the 109° domain wall is close to neutral. Hence, the intrinsic conductivity of the 71° domain walls is an order of magnitude larger than that of the 109° domain walls associated with bound‐charge‐induced bandgap lowering. Furthermore, the interaction of adjacent 71° domain walls and domain wall curvature leads to a variation of the charge distribution inside the walls, and causes a discontinuity of potential in the [110]p direction, which results in an alternative conductivity of the neighboring 71° domain walls, and a low conductivity of the 71° domain walls when measurement is taken from the film top surface.
The distinct intrinsic conductivity of the 71° and 109° domain walls in BiFeO3
is revealed by using a combination of local probe techniques. It is found that the intrinsic conductivity of the 71° domain walls is an order of magnitude larger than that of the 109° domain walls. Atomic resolution electron energy loss spectroscopy (EELS) analysis and phase‐field simulation demonstrate clear bandgap lowering and the weakly charged nature of the 71° domain walls, while a small bandgap change is observed at the 109° walls.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adma.201902099</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-8221-1033</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2019-09, Vol.31 (36), p.e1902099-n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_proquest_miscellaneous_2266333520 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Atomic force microscopy Bismuth ferrite Charge distribution conductive atomic force microscopy Curvature Domain walls Electrical resistivity Electron energy loss spectroscopy Energy dissipation Ferroelectric domains ferroelectric films Ferroelectric materials Ferroelectricity Heterostructures intrinsic conductance Low conductivity Magnetism piezoresponse force microscopy Resistance |
title | Intrinsic Conductance of Domain Walls in BiFeO3 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T19%3A39%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intrinsic%20Conductance%20of%20Domain%20Walls%20in%20BiFeO3&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Zhang,%20Yi&rft.date=2019-09-01&rft.volume=31&rft.issue=36&rft.spage=e1902099&rft.epage=n/a&rft.pages=e1902099-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.201902099&rft_dat=%3Cproquest_wiley%3E2283244880%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2283244880&rft_id=info:pmid/&rfr_iscdi=true |