Intrinsic Conductance of Domain Walls in BiFeO3

Ferroelectric domain walls exhibit a number of new functionalities that are not present in their host material. One of these functional characteristics is electrical conductivity that may lead to future device applications. Although progress has been made, the intrinsic conductivity of BiFeO3 domain...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2019-09, Vol.31 (36), p.e1902099-n/a
Hauptverfasser: Zhang, Yi, Lu, Haidong, Yan, Xingxu, Cheng, Xiaoxing, Xie, Lin, Aoki, Toshihiro, Li, Linze, Heikes, Colin, Lau, Shu Ping, Schlom, Darrell G., Chen, Longqing, Gruverman, Alexei, Pan, Xiaoqing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 36
container_start_page e1902099
container_title Advanced materials (Weinheim)
container_volume 31
creator Zhang, Yi
Lu, Haidong
Yan, Xingxu
Cheng, Xiaoxing
Xie, Lin
Aoki, Toshihiro
Li, Linze
Heikes, Colin
Lau, Shu Ping
Schlom, Darrell G.
Chen, Longqing
Gruverman, Alexei
Pan, Xiaoqing
description Ferroelectric domain walls exhibit a number of new functionalities that are not present in their host material. One of these functional characteristics is electrical conductivity that may lead to future device applications. Although progress has been made, the intrinsic conductivity of BiFeO3 domain walls is still elusive. Here, the intrinsic conductivity of 71° and 109° domain walls is reported by probing the local conductance over a cross section of the BiFeO3/TbScO3 (001) heterostructure. Through a combination of conductive atomic force microscopy, high‐resolution electron energy loss spectroscopy, and phase‐field simulations, it is found that the 71° domain wall has an inherently charged nature, while the 109° domain wall is close to neutral. Hence, the intrinsic conductivity of the 71° domain walls is an order of magnitude larger than that of the 109° domain walls associated with bound‐charge‐induced bandgap lowering. Furthermore, the interaction of adjacent 71° domain walls and domain wall curvature leads to a variation of the charge distribution inside the walls, and causes a discontinuity of potential in the [110]p direction, which results in an alternative conductivity of the neighboring 71° domain walls, and a low conductivity of the 71° domain walls when measurement is taken from the film top surface. The distinct intrinsic conductivity of the 71° and 109° domain walls in BiFeO3 is revealed by using a combination of local probe techniques. It is found that the intrinsic conductivity of the 71° domain walls is an order of magnitude larger than that of the 109° domain walls. Atomic resolution electron energy loss spectroscopy (EELS) analysis and phase‐field simulation demonstrate clear bandgap lowering and the weakly charged nature of the 71° domain walls, while a small bandgap change is observed at the 109° walls.
doi_str_mv 10.1002/adma.201902099
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_2266333520</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2283244880</sourcerecordid><originalsourceid>FETCH-LOGICAL-j3729-820d5897a10a72f604cec43a6396e411a35e5b0893bbd174c66d31ea393d19093</originalsourceid><addsrcrecordid>eNpdkEFLAzEQRoMoWKtXzwtevGw7ySTZ5Fhbq4VKL4rHkGZTSNnN1k0X6b_vlkoPnmYGHsP3PUIeKYwoABvbsrYjBlQDA62vyIAKRnMOWlyTAWgUuZZc3ZK7lLYAoCXIARkv4r4NMQWXTZtYdm5vo_NZs8lmTW1DzL5tVaWsX17C3K_wntxsbJX8w98ckq_56-f0PV-u3hbTyTLfYsF0rhiUQunCUrAF20jgzjuOVqKWnlNqUXixBqVxvS5pwZ2UJVJvUWPZF9A4JM_nv7u2-el82ps6JOerykbfdMkwJiUiCgY9-vQP3TZdG_t0PaWQca7UidJn6jdU_mB2bahtezAUzEmeOckzF3lmMvuYXC48AhOeYZA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2283244880</pqid></control><display><type>article</type><title>Intrinsic Conductance of Domain Walls in BiFeO3</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhang, Yi ; Lu, Haidong ; Yan, Xingxu ; Cheng, Xiaoxing ; Xie, Lin ; Aoki, Toshihiro ; Li, Linze ; Heikes, Colin ; Lau, Shu Ping ; Schlom, Darrell G. ; Chen, Longqing ; Gruverman, Alexei ; Pan, Xiaoqing</creator><creatorcontrib>Zhang, Yi ; Lu, Haidong ; Yan, Xingxu ; Cheng, Xiaoxing ; Xie, Lin ; Aoki, Toshihiro ; Li, Linze ; Heikes, Colin ; Lau, Shu Ping ; Schlom, Darrell G. ; Chen, Longqing ; Gruverman, Alexei ; Pan, Xiaoqing</creatorcontrib><description>Ferroelectric domain walls exhibit a number of new functionalities that are not present in their host material. One of these functional characteristics is electrical conductivity that may lead to future device applications. Although progress has been made, the intrinsic conductivity of BiFeO3 domain walls is still elusive. Here, the intrinsic conductivity of 71° and 109° domain walls is reported by probing the local conductance over a cross section of the BiFeO3/TbScO3 (001) heterostructure. Through a combination of conductive atomic force microscopy, high‐resolution electron energy loss spectroscopy, and phase‐field simulations, it is found that the 71° domain wall has an inherently charged nature, while the 109° domain wall is close to neutral. Hence, the intrinsic conductivity of the 71° domain walls is an order of magnitude larger than that of the 109° domain walls associated with bound‐charge‐induced bandgap lowering. Furthermore, the interaction of adjacent 71° domain walls and domain wall curvature leads to a variation of the charge distribution inside the walls, and causes a discontinuity of potential in the [110]p direction, which results in an alternative conductivity of the neighboring 71° domain walls, and a low conductivity of the 71° domain walls when measurement is taken from the film top surface. The distinct intrinsic conductivity of the 71° and 109° domain walls in BiFeO3 is revealed by using a combination of local probe techniques. It is found that the intrinsic conductivity of the 71° domain walls is an order of magnitude larger than that of the 109° domain walls. Atomic resolution electron energy loss spectroscopy (EELS) analysis and phase‐field simulation demonstrate clear bandgap lowering and the weakly charged nature of the 71° domain walls, while a small bandgap change is observed at the 109° walls.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.201902099</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Atomic force microscopy ; Bismuth ferrite ; Charge distribution ; conductive atomic force microscopy ; Curvature ; Domain walls ; Electrical resistivity ; Electron energy loss spectroscopy ; Energy dissipation ; Ferroelectric domains ; ferroelectric films ; Ferroelectric materials ; Ferroelectricity ; Heterostructures ; intrinsic conductance ; Low conductivity ; Magnetism ; piezoresponse force microscopy ; Resistance</subject><ispartof>Advanced materials (Weinheim), 2019-09, Vol.31 (36), p.e1902099-n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-8221-1033</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.201902099$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.201902099$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Zhang, Yi</creatorcontrib><creatorcontrib>Lu, Haidong</creatorcontrib><creatorcontrib>Yan, Xingxu</creatorcontrib><creatorcontrib>Cheng, Xiaoxing</creatorcontrib><creatorcontrib>Xie, Lin</creatorcontrib><creatorcontrib>Aoki, Toshihiro</creatorcontrib><creatorcontrib>Li, Linze</creatorcontrib><creatorcontrib>Heikes, Colin</creatorcontrib><creatorcontrib>Lau, Shu Ping</creatorcontrib><creatorcontrib>Schlom, Darrell G.</creatorcontrib><creatorcontrib>Chen, Longqing</creatorcontrib><creatorcontrib>Gruverman, Alexei</creatorcontrib><creatorcontrib>Pan, Xiaoqing</creatorcontrib><title>Intrinsic Conductance of Domain Walls in BiFeO3</title><title>Advanced materials (Weinheim)</title><description>Ferroelectric domain walls exhibit a number of new functionalities that are not present in their host material. One of these functional characteristics is electrical conductivity that may lead to future device applications. Although progress has been made, the intrinsic conductivity of BiFeO3 domain walls is still elusive. Here, the intrinsic conductivity of 71° and 109° domain walls is reported by probing the local conductance over a cross section of the BiFeO3/TbScO3 (001) heterostructure. Through a combination of conductive atomic force microscopy, high‐resolution electron energy loss spectroscopy, and phase‐field simulations, it is found that the 71° domain wall has an inherently charged nature, while the 109° domain wall is close to neutral. Hence, the intrinsic conductivity of the 71° domain walls is an order of magnitude larger than that of the 109° domain walls associated with bound‐charge‐induced bandgap lowering. Furthermore, the interaction of adjacent 71° domain walls and domain wall curvature leads to a variation of the charge distribution inside the walls, and causes a discontinuity of potential in the [110]p direction, which results in an alternative conductivity of the neighboring 71° domain walls, and a low conductivity of the 71° domain walls when measurement is taken from the film top surface. The distinct intrinsic conductivity of the 71° and 109° domain walls in BiFeO3 is revealed by using a combination of local probe techniques. It is found that the intrinsic conductivity of the 71° domain walls is an order of magnitude larger than that of the 109° domain walls. Atomic resolution electron energy loss spectroscopy (EELS) analysis and phase‐field simulation demonstrate clear bandgap lowering and the weakly charged nature of the 71° domain walls, while a small bandgap change is observed at the 109° walls.</description><subject>Atomic force microscopy</subject><subject>Bismuth ferrite</subject><subject>Charge distribution</subject><subject>conductive atomic force microscopy</subject><subject>Curvature</subject><subject>Domain walls</subject><subject>Electrical resistivity</subject><subject>Electron energy loss spectroscopy</subject><subject>Energy dissipation</subject><subject>Ferroelectric domains</subject><subject>ferroelectric films</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>Heterostructures</subject><subject>intrinsic conductance</subject><subject>Low conductivity</subject><subject>Magnetism</subject><subject>piezoresponse force microscopy</subject><subject>Resistance</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkEFLAzEQRoMoWKtXzwtevGw7ySTZ5Fhbq4VKL4rHkGZTSNnN1k0X6b_vlkoPnmYGHsP3PUIeKYwoABvbsrYjBlQDA62vyIAKRnMOWlyTAWgUuZZc3ZK7lLYAoCXIARkv4r4NMQWXTZtYdm5vo_NZs8lmTW1DzL5tVaWsX17C3K_wntxsbJX8w98ckq_56-f0PV-u3hbTyTLfYsF0rhiUQunCUrAF20jgzjuOVqKWnlNqUXixBqVxvS5pwZ2UJVJvUWPZF9A4JM_nv7u2-el82ps6JOerykbfdMkwJiUiCgY9-vQP3TZdG_t0PaWQca7UidJn6jdU_mB2bahtezAUzEmeOckzF3lmMvuYXC48AhOeYZA</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Zhang, Yi</creator><creator>Lu, Haidong</creator><creator>Yan, Xingxu</creator><creator>Cheng, Xiaoxing</creator><creator>Xie, Lin</creator><creator>Aoki, Toshihiro</creator><creator>Li, Linze</creator><creator>Heikes, Colin</creator><creator>Lau, Shu Ping</creator><creator>Schlom, Darrell G.</creator><creator>Chen, Longqing</creator><creator>Gruverman, Alexei</creator><creator>Pan, Xiaoqing</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8221-1033</orcidid></search><sort><creationdate>20190901</creationdate><title>Intrinsic Conductance of Domain Walls in BiFeO3</title><author>Zhang, Yi ; Lu, Haidong ; Yan, Xingxu ; Cheng, Xiaoxing ; Xie, Lin ; Aoki, Toshihiro ; Li, Linze ; Heikes, Colin ; Lau, Shu Ping ; Schlom, Darrell G. ; Chen, Longqing ; Gruverman, Alexei ; Pan, Xiaoqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j3729-820d5897a10a72f604cec43a6396e411a35e5b0893bbd174c66d31ea393d19093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Atomic force microscopy</topic><topic>Bismuth ferrite</topic><topic>Charge distribution</topic><topic>conductive atomic force microscopy</topic><topic>Curvature</topic><topic>Domain walls</topic><topic>Electrical resistivity</topic><topic>Electron energy loss spectroscopy</topic><topic>Energy dissipation</topic><topic>Ferroelectric domains</topic><topic>ferroelectric films</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>Heterostructures</topic><topic>intrinsic conductance</topic><topic>Low conductivity</topic><topic>Magnetism</topic><topic>piezoresponse force microscopy</topic><topic>Resistance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yi</creatorcontrib><creatorcontrib>Lu, Haidong</creatorcontrib><creatorcontrib>Yan, Xingxu</creatorcontrib><creatorcontrib>Cheng, Xiaoxing</creatorcontrib><creatorcontrib>Xie, Lin</creatorcontrib><creatorcontrib>Aoki, Toshihiro</creatorcontrib><creatorcontrib>Li, Linze</creatorcontrib><creatorcontrib>Heikes, Colin</creatorcontrib><creatorcontrib>Lau, Shu Ping</creatorcontrib><creatorcontrib>Schlom, Darrell G.</creatorcontrib><creatorcontrib>Chen, Longqing</creatorcontrib><creatorcontrib>Gruverman, Alexei</creatorcontrib><creatorcontrib>Pan, Xiaoqing</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yi</au><au>Lu, Haidong</au><au>Yan, Xingxu</au><au>Cheng, Xiaoxing</au><au>Xie, Lin</au><au>Aoki, Toshihiro</au><au>Li, Linze</au><au>Heikes, Colin</au><au>Lau, Shu Ping</au><au>Schlom, Darrell G.</au><au>Chen, Longqing</au><au>Gruverman, Alexei</au><au>Pan, Xiaoqing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intrinsic Conductance of Domain Walls in BiFeO3</atitle><jtitle>Advanced materials (Weinheim)</jtitle><date>2019-09-01</date><risdate>2019</risdate><volume>31</volume><issue>36</issue><spage>e1902099</spage><epage>n/a</epage><pages>e1902099-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Ferroelectric domain walls exhibit a number of new functionalities that are not present in their host material. One of these functional characteristics is electrical conductivity that may lead to future device applications. Although progress has been made, the intrinsic conductivity of BiFeO3 domain walls is still elusive. Here, the intrinsic conductivity of 71° and 109° domain walls is reported by probing the local conductance over a cross section of the BiFeO3/TbScO3 (001) heterostructure. Through a combination of conductive atomic force microscopy, high‐resolution electron energy loss spectroscopy, and phase‐field simulations, it is found that the 71° domain wall has an inherently charged nature, while the 109° domain wall is close to neutral. Hence, the intrinsic conductivity of the 71° domain walls is an order of magnitude larger than that of the 109° domain walls associated with bound‐charge‐induced bandgap lowering. Furthermore, the interaction of adjacent 71° domain walls and domain wall curvature leads to a variation of the charge distribution inside the walls, and causes a discontinuity of potential in the [110]p direction, which results in an alternative conductivity of the neighboring 71° domain walls, and a low conductivity of the 71° domain walls when measurement is taken from the film top surface. The distinct intrinsic conductivity of the 71° and 109° domain walls in BiFeO3 is revealed by using a combination of local probe techniques. It is found that the intrinsic conductivity of the 71° domain walls is an order of magnitude larger than that of the 109° domain walls. Atomic resolution electron energy loss spectroscopy (EELS) analysis and phase‐field simulation demonstrate clear bandgap lowering and the weakly charged nature of the 71° domain walls, while a small bandgap change is observed at the 109° walls.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adma.201902099</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-8221-1033</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2019-09, Vol.31 (36), p.e1902099-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2266333520
source Wiley Online Library Journals Frontfile Complete
subjects Atomic force microscopy
Bismuth ferrite
Charge distribution
conductive atomic force microscopy
Curvature
Domain walls
Electrical resistivity
Electron energy loss spectroscopy
Energy dissipation
Ferroelectric domains
ferroelectric films
Ferroelectric materials
Ferroelectricity
Heterostructures
intrinsic conductance
Low conductivity
Magnetism
piezoresponse force microscopy
Resistance
title Intrinsic Conductance of Domain Walls in BiFeO3
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T19%3A39%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intrinsic%20Conductance%20of%20Domain%20Walls%20in%20BiFeO3&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Zhang,%20Yi&rft.date=2019-09-01&rft.volume=31&rft.issue=36&rft.spage=e1902099&rft.epage=n/a&rft.pages=e1902099-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.201902099&rft_dat=%3Cproquest_wiley%3E2283244880%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2283244880&rft_id=info:pmid/&rfr_iscdi=true