Robust inference on the average treatment effect using the outcome highly adaptive lasso

Many estimators of the average effect of a treatment on an outcome require estimation of the propensity score, the outcome regression, or both. It is often beneficial to utilize flexible techniques, such as semiparametric regression or machine learning, to estimate these quantities. However, optimal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometrics 2020-03, Vol.76 (1), p.109-118
Hauptverfasser: Ju, Cheng, Benkeser, David, Laan, Mark J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 118
container_issue 1
container_start_page 109
container_title Biometrics
container_volume 76
creator Ju, Cheng
Benkeser, David
Laan, Mark J.
description Many estimators of the average effect of a treatment on an outcome require estimation of the propensity score, the outcome regression, or both. It is often beneficial to utilize flexible techniques, such as semiparametric regression or machine learning, to estimate these quantities. However, optimal estimation of these regressions does not necessarily lead to optimal estimation of the average treatment effect, particularly in settings with strong instrumental variables. A recent proposal addressed these issues via the outcome‐adaptive lasso, a penalized regression technique for estimating the propensity score that seeks to minimize the impact of instrumental variables on treatment effect estimators. However, a notable limitation of this approach is that its application is restricted to parametric models. We propose a more flexible alternative that we call the outcome highly adaptive lasso. We discuss the large sample theory for this estimator and propose closed‐form confidence intervals based on the proposed estimator. We show via simulation that our method offers benefits over several popular approaches.
doi_str_mv 10.1111/biom.13121
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2265789851</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2375897362</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3571-b53379c67d8604dd6b094a86d836b557e20dfb3e9b1ad9da44c4eb0a39f958893</originalsourceid><addsrcrecordid>eNp90E1LxDAQBuAgiq4fF3-ABLyI0DVpmrQ56uIXKIIo7C0kzXS30jZrkq7sv7e6qwcPzmUYeHgZXoSOKRnTYS5M7doxZTSlW2hEeUYTkqVkG40IISJhGZ3uof0Q3oZTcpLuoj1GGSeSiBGaPjvTh4jrrgIPXQnYdTjOAesleD0DHD3o2EIXMVQVlBH3oe5m38T1sXQt4Hk9mzcrrK1exHoJuNEhuEO0U-kmwNFmH6DXm-uXyV3y8HR7P7l8SErGc5oYzlguS5HbQpDMWmGIzHQhbMGE4TyHlNjKMJCGaiutzrIyA0M0k5XkRSHZATpb5y68e-8hRNXWoYSm0R24Pqg0FTwvZMHpQE__0DfX-274TqUs54XMmUgHdb5WpXcheKjUwtet9itFifrqW331rb77HvDJJrI3Ldhf-lPwAOgafNQNrP6JUlf3T4_r0E9ajIpd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2375897362</pqid></control><display><type>article</type><title>Robust inference on the average treatment effect using the outcome highly adaptive lasso</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Wiley Online Library All Journals</source><creator>Ju, Cheng ; Benkeser, David ; Laan, Mark J.</creator><creatorcontrib>Ju, Cheng ; Benkeser, David ; Laan, Mark J.</creatorcontrib><description>Many estimators of the average effect of a treatment on an outcome require estimation of the propensity score, the outcome regression, or both. It is often beneficial to utilize flexible techniques, such as semiparametric regression or machine learning, to estimate these quantities. However, optimal estimation of these regressions does not necessarily lead to optimal estimation of the average treatment effect, particularly in settings with strong instrumental variables. A recent proposal addressed these issues via the outcome‐adaptive lasso, a penalized regression technique for estimating the propensity score that seeks to minimize the impact of instrumental variables on treatment effect estimators. However, a notable limitation of this approach is that its application is restricted to parametric models. We propose a more flexible alternative that we call the outcome highly adaptive lasso. We discuss the large sample theory for this estimator and propose closed‐form confidence intervals based on the proposed estimator. We show via simulation that our method offers benefits over several popular approaches.</description><identifier>ISSN: 0006-341X</identifier><identifier>EISSN: 1541-0420</identifier><identifier>DOI: 10.1111/biom.13121</identifier><identifier>PMID: 31350906</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>adaptive estimation ; Adaptive sampling ; causal inference ; Computer simulation ; Confidence intervals ; Estimators ; instrumental variables ; Learning algorithms ; Machine learning ; Regression ; Statistical analysis ; targeted minimum loss‐based estimation</subject><ispartof>Biometrics, 2020-03, Vol.76 (1), p.109-118</ispartof><rights>2019 The International Biometric Society</rights><rights>2019 The International Biometric Society.</rights><rights>2020 The International Biometric Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3571-b53379c67d8604dd6b094a86d836b557e20dfb3e9b1ad9da44c4eb0a39f958893</citedby><cites>FETCH-LOGICAL-c3571-b53379c67d8604dd6b094a86d836b557e20dfb3e9b1ad9da44c4eb0a39f958893</cites><orcidid>0000-0001-7585-6266</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fbiom.13121$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fbiom.13121$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27922,27923,45572,45573</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31350906$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ju, Cheng</creatorcontrib><creatorcontrib>Benkeser, David</creatorcontrib><creatorcontrib>Laan, Mark J.</creatorcontrib><title>Robust inference on the average treatment effect using the outcome highly adaptive lasso</title><title>Biometrics</title><addtitle>Biometrics</addtitle><description>Many estimators of the average effect of a treatment on an outcome require estimation of the propensity score, the outcome regression, or both. It is often beneficial to utilize flexible techniques, such as semiparametric regression or machine learning, to estimate these quantities. However, optimal estimation of these regressions does not necessarily lead to optimal estimation of the average treatment effect, particularly in settings with strong instrumental variables. A recent proposal addressed these issues via the outcome‐adaptive lasso, a penalized regression technique for estimating the propensity score that seeks to minimize the impact of instrumental variables on treatment effect estimators. However, a notable limitation of this approach is that its application is restricted to parametric models. We propose a more flexible alternative that we call the outcome highly adaptive lasso. We discuss the large sample theory for this estimator and propose closed‐form confidence intervals based on the proposed estimator. We show via simulation that our method offers benefits over several popular approaches.</description><subject>adaptive estimation</subject><subject>Adaptive sampling</subject><subject>causal inference</subject><subject>Computer simulation</subject><subject>Confidence intervals</subject><subject>Estimators</subject><subject>instrumental variables</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Regression</subject><subject>Statistical analysis</subject><subject>targeted minimum loss‐based estimation</subject><issn>0006-341X</issn><issn>1541-0420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90E1LxDAQBuAgiq4fF3-ABLyI0DVpmrQ56uIXKIIo7C0kzXS30jZrkq7sv7e6qwcPzmUYeHgZXoSOKRnTYS5M7doxZTSlW2hEeUYTkqVkG40IISJhGZ3uof0Q3oZTcpLuoj1GGSeSiBGaPjvTh4jrrgIPXQnYdTjOAesleD0DHD3o2EIXMVQVlBH3oe5m38T1sXQt4Hk9mzcrrK1exHoJuNEhuEO0U-kmwNFmH6DXm-uXyV3y8HR7P7l8SErGc5oYzlguS5HbQpDMWmGIzHQhbMGE4TyHlNjKMJCGaiutzrIyA0M0k5XkRSHZATpb5y68e-8hRNXWoYSm0R24Pqg0FTwvZMHpQE__0DfX-274TqUs54XMmUgHdb5WpXcheKjUwtet9itFifrqW331rb77HvDJJrI3Ldhf-lPwAOgafNQNrP6JUlf3T4_r0E9ajIpd</recordid><startdate>202003</startdate><enddate>202003</enddate><creator>Ju, Cheng</creator><creator>Benkeser, David</creator><creator>Laan, Mark J.</creator><general>Blackwell Publishing Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7585-6266</orcidid></search><sort><creationdate>202003</creationdate><title>Robust inference on the average treatment effect using the outcome highly adaptive lasso</title><author>Ju, Cheng ; Benkeser, David ; Laan, Mark J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3571-b53379c67d8604dd6b094a86d836b557e20dfb3e9b1ad9da44c4eb0a39f958893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>adaptive estimation</topic><topic>Adaptive sampling</topic><topic>causal inference</topic><topic>Computer simulation</topic><topic>Confidence intervals</topic><topic>Estimators</topic><topic>instrumental variables</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Regression</topic><topic>Statistical analysis</topic><topic>targeted minimum loss‐based estimation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ju, Cheng</creatorcontrib><creatorcontrib>Benkeser, David</creatorcontrib><creatorcontrib>Laan, Mark J.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Biometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ju, Cheng</au><au>Benkeser, David</au><au>Laan, Mark J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust inference on the average treatment effect using the outcome highly adaptive lasso</atitle><jtitle>Biometrics</jtitle><addtitle>Biometrics</addtitle><date>2020-03</date><risdate>2020</risdate><volume>76</volume><issue>1</issue><spage>109</spage><epage>118</epage><pages>109-118</pages><issn>0006-341X</issn><eissn>1541-0420</eissn><abstract>Many estimators of the average effect of a treatment on an outcome require estimation of the propensity score, the outcome regression, or both. It is often beneficial to utilize flexible techniques, such as semiparametric regression or machine learning, to estimate these quantities. However, optimal estimation of these regressions does not necessarily lead to optimal estimation of the average treatment effect, particularly in settings with strong instrumental variables. A recent proposal addressed these issues via the outcome‐adaptive lasso, a penalized regression technique for estimating the propensity score that seeks to minimize the impact of instrumental variables on treatment effect estimators. However, a notable limitation of this approach is that its application is restricted to parametric models. We propose a more flexible alternative that we call the outcome highly adaptive lasso. We discuss the large sample theory for this estimator and propose closed‐form confidence intervals based on the proposed estimator. We show via simulation that our method offers benefits over several popular approaches.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>31350906</pmid><doi>10.1111/biom.13121</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7585-6266</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0006-341X
ispartof Biometrics, 2020-03, Vol.76 (1), p.109-118
issn 0006-341X
1541-0420
language eng
recordid cdi_proquest_miscellaneous_2265789851
source Oxford University Press Journals All Titles (1996-Current); Wiley Online Library All Journals
subjects adaptive estimation
Adaptive sampling
causal inference
Computer simulation
Confidence intervals
Estimators
instrumental variables
Learning algorithms
Machine learning
Regression
Statistical analysis
targeted minimum loss‐based estimation
title Robust inference on the average treatment effect using the outcome highly adaptive lasso
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T12%3A39%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20inference%20on%20the%20average%20treatment%20effect%20using%20the%20outcome%20highly%20adaptive%20lasso&rft.jtitle=Biometrics&rft.au=Ju,%20Cheng&rft.date=2020-03&rft.volume=76&rft.issue=1&rft.spage=109&rft.epage=118&rft.pages=109-118&rft.issn=0006-341X&rft.eissn=1541-0420&rft_id=info:doi/10.1111/biom.13121&rft_dat=%3Cproquest_cross%3E2375897362%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2375897362&rft_id=info:pmid/31350906&rfr_iscdi=true