Robust inference on the average treatment effect using the outcome highly adaptive lasso
Many estimators of the average effect of a treatment on an outcome require estimation of the propensity score, the outcome regression, or both. It is often beneficial to utilize flexible techniques, such as semiparametric regression or machine learning, to estimate these quantities. However, optimal...
Gespeichert in:
Veröffentlicht in: | Biometrics 2020-03, Vol.76 (1), p.109-118 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 118 |
---|---|
container_issue | 1 |
container_start_page | 109 |
container_title | Biometrics |
container_volume | 76 |
creator | Ju, Cheng Benkeser, David Laan, Mark J. |
description | Many estimators of the average effect of a treatment on an outcome require estimation of the propensity score, the outcome regression, or both. It is often beneficial to utilize flexible techniques, such as semiparametric regression or machine learning, to estimate these quantities. However, optimal estimation of these regressions does not necessarily lead to optimal estimation of the average treatment effect, particularly in settings with strong instrumental variables. A recent proposal addressed these issues via the outcome‐adaptive lasso, a penalized regression technique for estimating the propensity score that seeks to minimize the impact of instrumental variables on treatment effect estimators. However, a notable limitation of this approach is that its application is restricted to parametric models. We propose a more flexible alternative that we call the outcome highly adaptive lasso. We discuss the large sample theory for this estimator and propose closed‐form confidence intervals based on the proposed estimator. We show via simulation that our method offers benefits over several popular approaches. |
doi_str_mv | 10.1111/biom.13121 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2265789851</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2375897362</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3571-b53379c67d8604dd6b094a86d836b557e20dfb3e9b1ad9da44c4eb0a39f958893</originalsourceid><addsrcrecordid>eNp90E1LxDAQBuAgiq4fF3-ABLyI0DVpmrQ56uIXKIIo7C0kzXS30jZrkq7sv7e6qwcPzmUYeHgZXoSOKRnTYS5M7doxZTSlW2hEeUYTkqVkG40IISJhGZ3uof0Q3oZTcpLuoj1GGSeSiBGaPjvTh4jrrgIPXQnYdTjOAesleD0DHD3o2EIXMVQVlBH3oe5m38T1sXQt4Hk9mzcrrK1exHoJuNEhuEO0U-kmwNFmH6DXm-uXyV3y8HR7P7l8SErGc5oYzlguS5HbQpDMWmGIzHQhbMGE4TyHlNjKMJCGaiutzrIyA0M0k5XkRSHZATpb5y68e-8hRNXWoYSm0R24Pqg0FTwvZMHpQE__0DfX-274TqUs54XMmUgHdb5WpXcheKjUwtet9itFifrqW331rb77HvDJJrI3Ldhf-lPwAOgafNQNrP6JUlf3T4_r0E9ajIpd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2375897362</pqid></control><display><type>article</type><title>Robust inference on the average treatment effect using the outcome highly adaptive lasso</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Wiley Online Library All Journals</source><creator>Ju, Cheng ; Benkeser, David ; Laan, Mark J.</creator><creatorcontrib>Ju, Cheng ; Benkeser, David ; Laan, Mark J.</creatorcontrib><description>Many estimators of the average effect of a treatment on an outcome require estimation of the propensity score, the outcome regression, or both. It is often beneficial to utilize flexible techniques, such as semiparametric regression or machine learning, to estimate these quantities. However, optimal estimation of these regressions does not necessarily lead to optimal estimation of the average treatment effect, particularly in settings with strong instrumental variables. A recent proposal addressed these issues via the outcome‐adaptive lasso, a penalized regression technique for estimating the propensity score that seeks to minimize the impact of instrumental variables on treatment effect estimators. However, a notable limitation of this approach is that its application is restricted to parametric models. We propose a more flexible alternative that we call the outcome highly adaptive lasso. We discuss the large sample theory for this estimator and propose closed‐form confidence intervals based on the proposed estimator. We show via simulation that our method offers benefits over several popular approaches.</description><identifier>ISSN: 0006-341X</identifier><identifier>EISSN: 1541-0420</identifier><identifier>DOI: 10.1111/biom.13121</identifier><identifier>PMID: 31350906</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>adaptive estimation ; Adaptive sampling ; causal inference ; Computer simulation ; Confidence intervals ; Estimators ; instrumental variables ; Learning algorithms ; Machine learning ; Regression ; Statistical analysis ; targeted minimum loss‐based estimation</subject><ispartof>Biometrics, 2020-03, Vol.76 (1), p.109-118</ispartof><rights>2019 The International Biometric Society</rights><rights>2019 The International Biometric Society.</rights><rights>2020 The International Biometric Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3571-b53379c67d8604dd6b094a86d836b557e20dfb3e9b1ad9da44c4eb0a39f958893</citedby><cites>FETCH-LOGICAL-c3571-b53379c67d8604dd6b094a86d836b557e20dfb3e9b1ad9da44c4eb0a39f958893</cites><orcidid>0000-0001-7585-6266</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fbiom.13121$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fbiom.13121$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27922,27923,45572,45573</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31350906$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ju, Cheng</creatorcontrib><creatorcontrib>Benkeser, David</creatorcontrib><creatorcontrib>Laan, Mark J.</creatorcontrib><title>Robust inference on the average treatment effect using the outcome highly adaptive lasso</title><title>Biometrics</title><addtitle>Biometrics</addtitle><description>Many estimators of the average effect of a treatment on an outcome require estimation of the propensity score, the outcome regression, or both. It is often beneficial to utilize flexible techniques, such as semiparametric regression or machine learning, to estimate these quantities. However, optimal estimation of these regressions does not necessarily lead to optimal estimation of the average treatment effect, particularly in settings with strong instrumental variables. A recent proposal addressed these issues via the outcome‐adaptive lasso, a penalized regression technique for estimating the propensity score that seeks to minimize the impact of instrumental variables on treatment effect estimators. However, a notable limitation of this approach is that its application is restricted to parametric models. We propose a more flexible alternative that we call the outcome highly adaptive lasso. We discuss the large sample theory for this estimator and propose closed‐form confidence intervals based on the proposed estimator. We show via simulation that our method offers benefits over several popular approaches.</description><subject>adaptive estimation</subject><subject>Adaptive sampling</subject><subject>causal inference</subject><subject>Computer simulation</subject><subject>Confidence intervals</subject><subject>Estimators</subject><subject>instrumental variables</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Regression</subject><subject>Statistical analysis</subject><subject>targeted minimum loss‐based estimation</subject><issn>0006-341X</issn><issn>1541-0420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90E1LxDAQBuAgiq4fF3-ABLyI0DVpmrQ56uIXKIIo7C0kzXS30jZrkq7sv7e6qwcPzmUYeHgZXoSOKRnTYS5M7doxZTSlW2hEeUYTkqVkG40IISJhGZ3uof0Q3oZTcpLuoj1GGSeSiBGaPjvTh4jrrgIPXQnYdTjOAesleD0DHD3o2EIXMVQVlBH3oe5m38T1sXQt4Hk9mzcrrK1exHoJuNEhuEO0U-kmwNFmH6DXm-uXyV3y8HR7P7l8SErGc5oYzlguS5HbQpDMWmGIzHQhbMGE4TyHlNjKMJCGaiutzrIyA0M0k5XkRSHZATpb5y68e-8hRNXWoYSm0R24Pqg0FTwvZMHpQE__0DfX-274TqUs54XMmUgHdb5WpXcheKjUwtet9itFifrqW331rb77HvDJJrI3Ldhf-lPwAOgafNQNrP6JUlf3T4_r0E9ajIpd</recordid><startdate>202003</startdate><enddate>202003</enddate><creator>Ju, Cheng</creator><creator>Benkeser, David</creator><creator>Laan, Mark J.</creator><general>Blackwell Publishing Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7585-6266</orcidid></search><sort><creationdate>202003</creationdate><title>Robust inference on the average treatment effect using the outcome highly adaptive lasso</title><author>Ju, Cheng ; Benkeser, David ; Laan, Mark J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3571-b53379c67d8604dd6b094a86d836b557e20dfb3e9b1ad9da44c4eb0a39f958893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>adaptive estimation</topic><topic>Adaptive sampling</topic><topic>causal inference</topic><topic>Computer simulation</topic><topic>Confidence intervals</topic><topic>Estimators</topic><topic>instrumental variables</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Regression</topic><topic>Statistical analysis</topic><topic>targeted minimum loss‐based estimation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ju, Cheng</creatorcontrib><creatorcontrib>Benkeser, David</creatorcontrib><creatorcontrib>Laan, Mark J.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Biometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ju, Cheng</au><au>Benkeser, David</au><au>Laan, Mark J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust inference on the average treatment effect using the outcome highly adaptive lasso</atitle><jtitle>Biometrics</jtitle><addtitle>Biometrics</addtitle><date>2020-03</date><risdate>2020</risdate><volume>76</volume><issue>1</issue><spage>109</spage><epage>118</epage><pages>109-118</pages><issn>0006-341X</issn><eissn>1541-0420</eissn><abstract>Many estimators of the average effect of a treatment on an outcome require estimation of the propensity score, the outcome regression, or both. It is often beneficial to utilize flexible techniques, such as semiparametric regression or machine learning, to estimate these quantities. However, optimal estimation of these regressions does not necessarily lead to optimal estimation of the average treatment effect, particularly in settings with strong instrumental variables. A recent proposal addressed these issues via the outcome‐adaptive lasso, a penalized regression technique for estimating the propensity score that seeks to minimize the impact of instrumental variables on treatment effect estimators. However, a notable limitation of this approach is that its application is restricted to parametric models. We propose a more flexible alternative that we call the outcome highly adaptive lasso. We discuss the large sample theory for this estimator and propose closed‐form confidence intervals based on the proposed estimator. We show via simulation that our method offers benefits over several popular approaches.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>31350906</pmid><doi>10.1111/biom.13121</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7585-6266</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-341X |
ispartof | Biometrics, 2020-03, Vol.76 (1), p.109-118 |
issn | 0006-341X 1541-0420 |
language | eng |
recordid | cdi_proquest_miscellaneous_2265789851 |
source | Oxford University Press Journals All Titles (1996-Current); Wiley Online Library All Journals |
subjects | adaptive estimation Adaptive sampling causal inference Computer simulation Confidence intervals Estimators instrumental variables Learning algorithms Machine learning Regression Statistical analysis targeted minimum loss‐based estimation |
title | Robust inference on the average treatment effect using the outcome highly adaptive lasso |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T12%3A39%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20inference%20on%20the%20average%20treatment%20effect%20using%20the%20outcome%20highly%20adaptive%20lasso&rft.jtitle=Biometrics&rft.au=Ju,%20Cheng&rft.date=2020-03&rft.volume=76&rft.issue=1&rft.spage=109&rft.epage=118&rft.pages=109-118&rft.issn=0006-341X&rft.eissn=1541-0420&rft_id=info:doi/10.1111/biom.13121&rft_dat=%3Cproquest_cross%3E2375897362%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2375897362&rft_id=info:pmid/31350906&rfr_iscdi=true |