HER2 recruits AKT1 to disrupt STING signalling and suppress antiviral defence and antitumour immunity

Sensing cytosolic DNA through the cGAS–STING pathway constitutes a widespread innate immune mechanism to monitor cellular damage and microbial invasion. Evading this surveillance is crucial in tumorigenesis, but the process remains largely unexplored. Here, we show that the receptor tyrosine kinase...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature cell biology 2019-08, Vol.21 (8), p.1027-1040
Hauptverfasser: Wu, Shiying, Zhang, Qian, Zhang, Fei, Meng, Fansen, Liu, Shengduo, Zhou, Ruyuan, Wu, Qingzhe, Li, Xinran, Shen, Li, Huang, Jun, Qin, Jun, Ouyang, Songying, Xia, Zongping, Song, Hai, Feng, Xin-Hua, Zou, Jian, Xu, Pinglong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1040
container_issue 8
container_start_page 1027
container_title Nature cell biology
container_volume 21
creator Wu, Shiying
Zhang, Qian
Zhang, Fei
Meng, Fansen
Liu, Shengduo
Zhou, Ruyuan
Wu, Qingzhe
Li, Xinran
Shen, Li
Huang, Jun
Qin, Jun
Ouyang, Songying
Xia, Zongping
Song, Hai
Feng, Xin-Hua
Zou, Jian
Xu, Pinglong
description Sensing cytosolic DNA through the cGAS–STING pathway constitutes a widespread innate immune mechanism to monitor cellular damage and microbial invasion. Evading this surveillance is crucial in tumorigenesis, but the process remains largely unexplored. Here, we show that the receptor tyrosine kinase HER2 (also known as ErbB-2 or Neu) potently inhibits cGAS–STING signalling and prevents cancer cells from producing cytokines, entering senescence and undergoing apoptosis. HER2, but not EGFR, associates strongly with STING and recruits AKT1 (also known as PKB) to directly phosphorylate TBK1, which prevents the TBK1–STING association and TBK1 K63-linked ubiquitination, thus attenuating STING signalling. Unexpectedly, we observed that DNA sensing robustly activates the HER2–AKT1 axis, resulting in negative feedback. Accordingly, genetic or pharmacological targeting of the HER2–AKT1 cascade augments damage-induced cellular senescence and apoptosis, and enhances STING-mediated antiviral and antitumour immunity. Thus, our findings reveal a critical function of the oncogenic pathway in innate immune regulation and unexpectedly connect HER2–AKT1 signalling to the surveillance of cellular damage and antitumour immunity. Wu et al. demonstrate that HER2 recruits AKT1 to disrupt the STING signalosome, thereby suppressing damage-induced cellular senescence and STING-mediated antiviral and antitumour responses in vivo.
doi_str_mv 10.1038/s41556-019-0352-z
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2265780068</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A595279333</galeid><sourcerecordid>A595279333</sourcerecordid><originalsourceid>FETCH-LOGICAL-c473t-94da7d8cc9c888b04201ffad47b445a9545bb8003d19abe49faca24ca76768d63</originalsourceid><addsrcrecordid>eNp1kltrFDEYhgdRbF39Ad5IwBu9mJpzJpdLqe1iUWjX65BJMkPKHNYciu2vN9OtlhVNLpJ8ed6XfOStqrcIniBImk-RIsZ4DZGsIWG4vn9WHSMqeE25kM-XPWe1IBIfVa9ivIEQUQrFy-qIIEIwoeK4chdnVxgEZ0L2KYL1ly0CaQbWx5B3CVxvN1_PQfT9pIfBTz3QkwUx73bBxVgOyd_6oAdgXecm4x6ul2rK45wD8OOYJ5_uXlcvOj1E9-ZxXVXfP59tTy_qy2_nm9P1ZW2oIKmW1GphG2OkaZqmhRRD1HXaUtFSyrRklLVtAyGxSOrWUdlpozE1WnDBG8vJqvqw992F-Ud2ManRR-OGQU9uzlFhzJkoBrwp6Pu_0Jvy4tLmAyUEQRTyJ6rXg1N-6uYUtFlM1ZpJhoUkZayqk39QZVo3ejNPrvOlfiD4eCAoTHI_U69zjGpzfXXIoj1rwhxjcJ3aBT_qcKcQVEsM1D4GqsRALTFQ90Xz7rG53I7O_lH8_vcC4D0Qy9XUu_DU_f9dfwGgR7sg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2267731406</pqid></control><display><type>article</type><title>HER2 recruits AKT1 to disrupt STING signalling and suppress antiviral defence and antitumour immunity</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Wu, Shiying ; Zhang, Qian ; Zhang, Fei ; Meng, Fansen ; Liu, Shengduo ; Zhou, Ruyuan ; Wu, Qingzhe ; Li, Xinran ; Shen, Li ; Huang, Jun ; Qin, Jun ; Ouyang, Songying ; Xia, Zongping ; Song, Hai ; Feng, Xin-Hua ; Zou, Jian ; Xu, Pinglong</creator><creatorcontrib>Wu, Shiying ; Zhang, Qian ; Zhang, Fei ; Meng, Fansen ; Liu, Shengduo ; Zhou, Ruyuan ; Wu, Qingzhe ; Li, Xinran ; Shen, Li ; Huang, Jun ; Qin, Jun ; Ouyang, Songying ; Xia, Zongping ; Song, Hai ; Feng, Xin-Hua ; Zou, Jian ; Xu, Pinglong</creatorcontrib><description>Sensing cytosolic DNA through the cGAS–STING pathway constitutes a widespread innate immune mechanism to monitor cellular damage and microbial invasion. Evading this surveillance is crucial in tumorigenesis, but the process remains largely unexplored. Here, we show that the receptor tyrosine kinase HER2 (also known as ErbB-2 or Neu) potently inhibits cGAS–STING signalling and prevents cancer cells from producing cytokines, entering senescence and undergoing apoptosis. HER2, but not EGFR, associates strongly with STING and recruits AKT1 (also known as PKB) to directly phosphorylate TBK1, which prevents the TBK1–STING association and TBK1 K63-linked ubiquitination, thus attenuating STING signalling. Unexpectedly, we observed that DNA sensing robustly activates the HER2–AKT1 axis, resulting in negative feedback. Accordingly, genetic or pharmacological targeting of the HER2–AKT1 cascade augments damage-induced cellular senescence and apoptosis, and enhances STING-mediated antiviral and antitumour immunity. Thus, our findings reveal a critical function of the oncogenic pathway in innate immune regulation and unexpectedly connect HER2–AKT1 signalling to the surveillance of cellular damage and antitumour immunity. Wu et al. demonstrate that HER2 recruits AKT1 to disrupt the STING signalosome, thereby suppressing damage-induced cellular senescence and STING-mediated antiviral and antitumour responses in vivo.</description><identifier>ISSN: 1465-7392</identifier><identifier>EISSN: 1476-4679</identifier><identifier>DOI: 10.1038/s41556-019-0352-z</identifier><identifier>PMID: 31332347</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/1 ; 13/2 ; 13/21 ; 13/51 ; 13/89 ; 13/95 ; 14/19 ; 38/77 ; 631/67 ; 631/67/395 ; 631/80/509 ; 631/80/86 ; 64/116 ; 64/60 ; 82/47 ; 82/58 ; 82/83 ; AKT1 protein ; Antiviral drugs ; Apoptosis ; Biomedical and Life Sciences ; Cancer Research ; Carcinogenesis ; Cell Biology ; Cell research ; Cytokines ; Damage ; Deoxyribonucleic acid ; Developmental Biology ; DNA ; Epidermal growth factor receptors ; ErbB protein ; ErbB-2 protein ; Genetic aspects ; Health aspects ; Host-Pathogen Interactions ; Humans ; Immune response ; Immunity ; Immunity, Innate - immunology ; Immunoregulation ; Kinases ; Life Sciences ; Membrane proteins ; Membrane Proteins - immunology ; Membrane Proteins - metabolism ; Microorganisms ; Negative feedback ; Phosphorylation ; Physiological aspects ; Protein kinases ; Protein-tyrosine kinase receptors ; Proto-Oncogene Proteins c-akt - immunology ; Proto-Oncogene Proteins c-akt - metabolism ; Receptor, ErbB-2 - immunology ; Receptor, ErbB-2 - metabolism ; Senescence ; Signal transduction ; Signaling ; Stem Cells ; Surveillance ; Tumorigenesis ; Tyrosine ; Ubiquitination ; Ubiquitination - immunology</subject><ispartof>Nature cell biology, 2019-08, Vol.21 (8), p.1027-1040</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><rights>COPYRIGHT 2019 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Aug 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c473t-94da7d8cc9c888b04201ffad47b445a9545bb8003d19abe49faca24ca76768d63</citedby><cites>FETCH-LOGICAL-c473t-94da7d8cc9c888b04201ffad47b445a9545bb8003d19abe49faca24ca76768d63</cites><orcidid>0000-0002-1120-1524 ; 0000-0002-1933-4911 ; 0000-0001-7726-5443 ; 0000-0002-2263-128X ; 0000-0002-7837-653X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41556-019-0352-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41556-019-0352-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31332347$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Shiying</creatorcontrib><creatorcontrib>Zhang, Qian</creatorcontrib><creatorcontrib>Zhang, Fei</creatorcontrib><creatorcontrib>Meng, Fansen</creatorcontrib><creatorcontrib>Liu, Shengduo</creatorcontrib><creatorcontrib>Zhou, Ruyuan</creatorcontrib><creatorcontrib>Wu, Qingzhe</creatorcontrib><creatorcontrib>Li, Xinran</creatorcontrib><creatorcontrib>Shen, Li</creatorcontrib><creatorcontrib>Huang, Jun</creatorcontrib><creatorcontrib>Qin, Jun</creatorcontrib><creatorcontrib>Ouyang, Songying</creatorcontrib><creatorcontrib>Xia, Zongping</creatorcontrib><creatorcontrib>Song, Hai</creatorcontrib><creatorcontrib>Feng, Xin-Hua</creatorcontrib><creatorcontrib>Zou, Jian</creatorcontrib><creatorcontrib>Xu, Pinglong</creatorcontrib><title>HER2 recruits AKT1 to disrupt STING signalling and suppress antiviral defence and antitumour immunity</title><title>Nature cell biology</title><addtitle>Nat Cell Biol</addtitle><addtitle>Nat Cell Biol</addtitle><description>Sensing cytosolic DNA through the cGAS–STING pathway constitutes a widespread innate immune mechanism to monitor cellular damage and microbial invasion. Evading this surveillance is crucial in tumorigenesis, but the process remains largely unexplored. Here, we show that the receptor tyrosine kinase HER2 (also known as ErbB-2 or Neu) potently inhibits cGAS–STING signalling and prevents cancer cells from producing cytokines, entering senescence and undergoing apoptosis. HER2, but not EGFR, associates strongly with STING and recruits AKT1 (also known as PKB) to directly phosphorylate TBK1, which prevents the TBK1–STING association and TBK1 K63-linked ubiquitination, thus attenuating STING signalling. Unexpectedly, we observed that DNA sensing robustly activates the HER2–AKT1 axis, resulting in negative feedback. Accordingly, genetic or pharmacological targeting of the HER2–AKT1 cascade augments damage-induced cellular senescence and apoptosis, and enhances STING-mediated antiviral and antitumour immunity. Thus, our findings reveal a critical function of the oncogenic pathway in innate immune regulation and unexpectedly connect HER2–AKT1 signalling to the surveillance of cellular damage and antitumour immunity. Wu et al. demonstrate that HER2 recruits AKT1 to disrupt the STING signalosome, thereby suppressing damage-induced cellular senescence and STING-mediated antiviral and antitumour responses in vivo.</description><subject>13/1</subject><subject>13/2</subject><subject>13/21</subject><subject>13/51</subject><subject>13/89</subject><subject>13/95</subject><subject>14/19</subject><subject>38/77</subject><subject>631/67</subject><subject>631/67/395</subject><subject>631/80/509</subject><subject>631/80/86</subject><subject>64/116</subject><subject>64/60</subject><subject>82/47</subject><subject>82/58</subject><subject>82/83</subject><subject>AKT1 protein</subject><subject>Antiviral drugs</subject><subject>Apoptosis</subject><subject>Biomedical and Life Sciences</subject><subject>Cancer Research</subject><subject>Carcinogenesis</subject><subject>Cell Biology</subject><subject>Cell research</subject><subject>Cytokines</subject><subject>Damage</subject><subject>Deoxyribonucleic acid</subject><subject>Developmental Biology</subject><subject>DNA</subject><subject>Epidermal growth factor receptors</subject><subject>ErbB protein</subject><subject>ErbB-2 protein</subject><subject>Genetic aspects</subject><subject>Health aspects</subject><subject>Host-Pathogen Interactions</subject><subject>Humans</subject><subject>Immune response</subject><subject>Immunity</subject><subject>Immunity, Innate - immunology</subject><subject>Immunoregulation</subject><subject>Kinases</subject><subject>Life Sciences</subject><subject>Membrane proteins</subject><subject>Membrane Proteins - immunology</subject><subject>Membrane Proteins - metabolism</subject><subject>Microorganisms</subject><subject>Negative feedback</subject><subject>Phosphorylation</subject><subject>Physiological aspects</subject><subject>Protein kinases</subject><subject>Protein-tyrosine kinase receptors</subject><subject>Proto-Oncogene Proteins c-akt - immunology</subject><subject>Proto-Oncogene Proteins c-akt - metabolism</subject><subject>Receptor, ErbB-2 - immunology</subject><subject>Receptor, ErbB-2 - metabolism</subject><subject>Senescence</subject><subject>Signal transduction</subject><subject>Signaling</subject><subject>Stem Cells</subject><subject>Surveillance</subject><subject>Tumorigenesis</subject><subject>Tyrosine</subject><subject>Ubiquitination</subject><subject>Ubiquitination - immunology</subject><issn>1465-7392</issn><issn>1476-4679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kltrFDEYhgdRbF39Ad5IwBu9mJpzJpdLqe1iUWjX65BJMkPKHNYciu2vN9OtlhVNLpJ8ed6XfOStqrcIniBImk-RIsZ4DZGsIWG4vn9WHSMqeE25kM-XPWe1IBIfVa9ivIEQUQrFy-qIIEIwoeK4chdnVxgEZ0L2KYL1ly0CaQbWx5B3CVxvN1_PQfT9pIfBTz3QkwUx73bBxVgOyd_6oAdgXecm4x6ul2rK45wD8OOYJ5_uXlcvOj1E9-ZxXVXfP59tTy_qy2_nm9P1ZW2oIKmW1GphG2OkaZqmhRRD1HXaUtFSyrRklLVtAyGxSOrWUdlpozE1WnDBG8vJqvqw992F-Ud2ManRR-OGQU9uzlFhzJkoBrwp6Pu_0Jvy4tLmAyUEQRTyJ6rXg1N-6uYUtFlM1ZpJhoUkZayqk39QZVo3ejNPrvOlfiD4eCAoTHI_U69zjGpzfXXIoj1rwhxjcJ3aBT_qcKcQVEsM1D4GqsRALTFQ90Xz7rG53I7O_lH8_vcC4D0Qy9XUu_DU_f9dfwGgR7sg</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Wu, Shiying</creator><creator>Zhang, Qian</creator><creator>Zhang, Fei</creator><creator>Meng, Fansen</creator><creator>Liu, Shengduo</creator><creator>Zhou, Ruyuan</creator><creator>Wu, Qingzhe</creator><creator>Li, Xinran</creator><creator>Shen, Li</creator><creator>Huang, Jun</creator><creator>Qin, Jun</creator><creator>Ouyang, Songying</creator><creator>Xia, Zongping</creator><creator>Song, Hai</creator><creator>Feng, Xin-Hua</creator><creator>Zou, Jian</creator><creator>Xu, Pinglong</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1120-1524</orcidid><orcidid>https://orcid.org/0000-0002-1933-4911</orcidid><orcidid>https://orcid.org/0000-0001-7726-5443</orcidid><orcidid>https://orcid.org/0000-0002-2263-128X</orcidid><orcidid>https://orcid.org/0000-0002-7837-653X</orcidid></search><sort><creationdate>20190801</creationdate><title>HER2 recruits AKT1 to disrupt STING signalling and suppress antiviral defence and antitumour immunity</title><author>Wu, Shiying ; Zhang, Qian ; Zhang, Fei ; Meng, Fansen ; Liu, Shengduo ; Zhou, Ruyuan ; Wu, Qingzhe ; Li, Xinran ; Shen, Li ; Huang, Jun ; Qin, Jun ; Ouyang, Songying ; Xia, Zongping ; Song, Hai ; Feng, Xin-Hua ; Zou, Jian ; Xu, Pinglong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c473t-94da7d8cc9c888b04201ffad47b445a9545bb8003d19abe49faca24ca76768d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>13/1</topic><topic>13/2</topic><topic>13/21</topic><topic>13/51</topic><topic>13/89</topic><topic>13/95</topic><topic>14/19</topic><topic>38/77</topic><topic>631/67</topic><topic>631/67/395</topic><topic>631/80/509</topic><topic>631/80/86</topic><topic>64/116</topic><topic>64/60</topic><topic>82/47</topic><topic>82/58</topic><topic>82/83</topic><topic>AKT1 protein</topic><topic>Antiviral drugs</topic><topic>Apoptosis</topic><topic>Biomedical and Life Sciences</topic><topic>Cancer Research</topic><topic>Carcinogenesis</topic><topic>Cell Biology</topic><topic>Cell research</topic><topic>Cytokines</topic><topic>Damage</topic><topic>Deoxyribonucleic acid</topic><topic>Developmental Biology</topic><topic>DNA</topic><topic>Epidermal growth factor receptors</topic><topic>ErbB protein</topic><topic>ErbB-2 protein</topic><topic>Genetic aspects</topic><topic>Health aspects</topic><topic>Host-Pathogen Interactions</topic><topic>Humans</topic><topic>Immune response</topic><topic>Immunity</topic><topic>Immunity, Innate - immunology</topic><topic>Immunoregulation</topic><topic>Kinases</topic><topic>Life Sciences</topic><topic>Membrane proteins</topic><topic>Membrane Proteins - immunology</topic><topic>Membrane Proteins - metabolism</topic><topic>Microorganisms</topic><topic>Negative feedback</topic><topic>Phosphorylation</topic><topic>Physiological aspects</topic><topic>Protein kinases</topic><topic>Protein-tyrosine kinase receptors</topic><topic>Proto-Oncogene Proteins c-akt - immunology</topic><topic>Proto-Oncogene Proteins c-akt - metabolism</topic><topic>Receptor, ErbB-2 - immunology</topic><topic>Receptor, ErbB-2 - metabolism</topic><topic>Senescence</topic><topic>Signal transduction</topic><topic>Signaling</topic><topic>Stem Cells</topic><topic>Surveillance</topic><topic>Tumorigenesis</topic><topic>Tyrosine</topic><topic>Ubiquitination</topic><topic>Ubiquitination - immunology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Shiying</creatorcontrib><creatorcontrib>Zhang, Qian</creatorcontrib><creatorcontrib>Zhang, Fei</creatorcontrib><creatorcontrib>Meng, Fansen</creatorcontrib><creatorcontrib>Liu, Shengduo</creatorcontrib><creatorcontrib>Zhou, Ruyuan</creatorcontrib><creatorcontrib>Wu, Qingzhe</creatorcontrib><creatorcontrib>Li, Xinran</creatorcontrib><creatorcontrib>Shen, Li</creatorcontrib><creatorcontrib>Huang, Jun</creatorcontrib><creatorcontrib>Qin, Jun</creatorcontrib><creatorcontrib>Ouyang, Songying</creatorcontrib><creatorcontrib>Xia, Zongping</creatorcontrib><creatorcontrib>Song, Hai</creatorcontrib><creatorcontrib>Feng, Xin-Hua</creatorcontrib><creatorcontrib>Zou, Jian</creatorcontrib><creatorcontrib>Xu, Pinglong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Shiying</au><au>Zhang, Qian</au><au>Zhang, Fei</au><au>Meng, Fansen</au><au>Liu, Shengduo</au><au>Zhou, Ruyuan</au><au>Wu, Qingzhe</au><au>Li, Xinran</au><au>Shen, Li</au><au>Huang, Jun</au><au>Qin, Jun</au><au>Ouyang, Songying</au><au>Xia, Zongping</au><au>Song, Hai</au><au>Feng, Xin-Hua</au><au>Zou, Jian</au><au>Xu, Pinglong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>HER2 recruits AKT1 to disrupt STING signalling and suppress antiviral defence and antitumour immunity</atitle><jtitle>Nature cell biology</jtitle><stitle>Nat Cell Biol</stitle><addtitle>Nat Cell Biol</addtitle><date>2019-08-01</date><risdate>2019</risdate><volume>21</volume><issue>8</issue><spage>1027</spage><epage>1040</epage><pages>1027-1040</pages><issn>1465-7392</issn><eissn>1476-4679</eissn><abstract>Sensing cytosolic DNA through the cGAS–STING pathway constitutes a widespread innate immune mechanism to monitor cellular damage and microbial invasion. Evading this surveillance is crucial in tumorigenesis, but the process remains largely unexplored. Here, we show that the receptor tyrosine kinase HER2 (also known as ErbB-2 or Neu) potently inhibits cGAS–STING signalling and prevents cancer cells from producing cytokines, entering senescence and undergoing apoptosis. HER2, but not EGFR, associates strongly with STING and recruits AKT1 (also known as PKB) to directly phosphorylate TBK1, which prevents the TBK1–STING association and TBK1 K63-linked ubiquitination, thus attenuating STING signalling. Unexpectedly, we observed that DNA sensing robustly activates the HER2–AKT1 axis, resulting in negative feedback. Accordingly, genetic or pharmacological targeting of the HER2–AKT1 cascade augments damage-induced cellular senescence and apoptosis, and enhances STING-mediated antiviral and antitumour immunity. Thus, our findings reveal a critical function of the oncogenic pathway in innate immune regulation and unexpectedly connect HER2–AKT1 signalling to the surveillance of cellular damage and antitumour immunity. Wu et al. demonstrate that HER2 recruits AKT1 to disrupt the STING signalosome, thereby suppressing damage-induced cellular senescence and STING-mediated antiviral and antitumour responses in vivo.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31332347</pmid><doi>10.1038/s41556-019-0352-z</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-1120-1524</orcidid><orcidid>https://orcid.org/0000-0002-1933-4911</orcidid><orcidid>https://orcid.org/0000-0001-7726-5443</orcidid><orcidid>https://orcid.org/0000-0002-2263-128X</orcidid><orcidid>https://orcid.org/0000-0002-7837-653X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1465-7392
ispartof Nature cell biology, 2019-08, Vol.21 (8), p.1027-1040
issn 1465-7392
1476-4679
language eng
recordid cdi_proquest_miscellaneous_2265780068
source MEDLINE; SpringerLink Journals; Nature Journals Online
subjects 13/1
13/2
13/21
13/51
13/89
13/95
14/19
38/77
631/67
631/67/395
631/80/509
631/80/86
64/116
64/60
82/47
82/58
82/83
AKT1 protein
Antiviral drugs
Apoptosis
Biomedical and Life Sciences
Cancer Research
Carcinogenesis
Cell Biology
Cell research
Cytokines
Damage
Deoxyribonucleic acid
Developmental Biology
DNA
Epidermal growth factor receptors
ErbB protein
ErbB-2 protein
Genetic aspects
Health aspects
Host-Pathogen Interactions
Humans
Immune response
Immunity
Immunity, Innate - immunology
Immunoregulation
Kinases
Life Sciences
Membrane proteins
Membrane Proteins - immunology
Membrane Proteins - metabolism
Microorganisms
Negative feedback
Phosphorylation
Physiological aspects
Protein kinases
Protein-tyrosine kinase receptors
Proto-Oncogene Proteins c-akt - immunology
Proto-Oncogene Proteins c-akt - metabolism
Receptor, ErbB-2 - immunology
Receptor, ErbB-2 - metabolism
Senescence
Signal transduction
Signaling
Stem Cells
Surveillance
Tumorigenesis
Tyrosine
Ubiquitination
Ubiquitination - immunology
title HER2 recruits AKT1 to disrupt STING signalling and suppress antiviral defence and antitumour immunity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T12%3A41%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=HER2%20recruits%20AKT1%20to%20disrupt%20STING%20signalling%20and%20suppress%20antiviral%20defence%20and%20antitumour%20immunity&rft.jtitle=Nature%20cell%20biology&rft.au=Wu,%20Shiying&rft.date=2019-08-01&rft.volume=21&rft.issue=8&rft.spage=1027&rft.epage=1040&rft.pages=1027-1040&rft.issn=1465-7392&rft.eissn=1476-4679&rft_id=info:doi/10.1038/s41556-019-0352-z&rft_dat=%3Cgale_proqu%3EA595279333%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2267731406&rft_id=info:pmid/31332347&rft_galeid=A595279333&rfr_iscdi=true