Role of Carbon Monoxide in the Mechanisms of Action of Extracellular ATP on Contractile Activity of Vascular Smooth Muscle Cells

We studied the role of carbon monoxide (CO) in the effect of P2X and P2Y receptor agonist ATP on the tone of rat aorta segments with intact endothelium. ATP (1-1000 μM) and P2X receptor agonist α,β-MeATP (100 μM) relaxed segments precontracted with phenylephrine (10 μM), while UTP (100-1000 μM) incr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of experimental biology and medicine 2019-07, Vol.167 (3), p.363-366
Hauptverfasser: Smagliy, L. V., Yartseva, Yu. O., Rydchenko, V. S., Birulina, Yu. G., Gusakova, S. V., Kovalev, I. V., Petrova, I. V., Nosarev, A. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 366
container_issue 3
container_start_page 363
container_title Bulletin of experimental biology and medicine
container_volume 167
creator Smagliy, L. V.
Yartseva, Yu. O.
Rydchenko, V. S.
Birulina, Yu. G.
Gusakova, S. V.
Kovalev, I. V.
Petrova, I. V.
Nosarev, A. V.
description We studied the role of carbon monoxide (CO) in the effect of P2X and P2Y receptor agonist ATP on the tone of rat aorta segments with intact endothelium. ATP (1-1000 μM) and P2X receptor agonist α,β-MeATP (100 μM) relaxed segments precontracted with phenylephrine (10 μM), while UTP (100-1000 μM) increased the amplitude of phenylephrine-induced contraction. The relaxing effect of ATP was enhanced by CORM II (100 μM), NO synthase inhibitor L-NAME, and guanylate cyclase inhibitor ODQ and attenuated by ZnPP IX (100 μM). The constrictive effect of UTP was weakened by CORM II (100 μM), but was not changed by ZnPP IX (100 μM). ZnPP IX (100 μM) weakened the relaxation response to α,β-MeATP. Thus, ATP involves the CO-dependent signaling cascade through P2X receptors.
doi_str_mv 10.1007/s10517-019-04527-8
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2265770131</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A598424433</galeid><sourcerecordid>A598424433</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-9a10a756c2441266a2793031446bd775c582eb3b613667ee86af9909e1e7c4913</originalsourceid><addsrcrecordid>eNp9kk1rFTEUhoMo9lr9Ay5kQChupuZrkszyMtQP6EXR6jbk5p7ppMwkNZmRdudPN-mt1opIFklOnvflnPAi9JzgY4KxfJ0IboisMWlrzBsqa_UArUgjWa0oJQ_RCmeq5kqpA_QkpYtyxYI8RgeMMC6Uwiv041MYoQp91Zm4Db7aBB-u3A4q56t5gGoDdjDepSkVaG1nl6F8Ormao7EwjstoYrU--1jlehd8qc4uWxb0u5uvC_zVJHvDfZ5CmIdqsySbkS7L01P0qDdjgme3-yH68ubkrHtXn354-75bn9aWUz7XrSHYyEZYyjmhQhgqW4YZ4Vxsd1I2tlEUtmwrCBNCAihh-rbFLRCQlreEHaJXe9_LGL4tkGY9uVQGMB7CkjSlopESE1bQl3-hF2GJPndXKM4VJqS5o87NCNr5PpTZi6leN63KXXPGMnX8DyqvHUzOBg99_qz7gqM_BAOYcR5SGJfy8ek-SPegjSGlCL2-jG4y8VoTrEs-9D4fOudD3-RDqyx6cTvasp1g91vyKxAZYHsg5Sd_DvFu9v_Y_gQ8v8F4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2264480115</pqid></control><display><type>article</type><title>Role of Carbon Monoxide in the Mechanisms of Action of Extracellular ATP on Contractile Activity of Vascular Smooth Muscle Cells</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Smagliy, L. V. ; Yartseva, Yu. O. ; Rydchenko, V. S. ; Birulina, Yu. G. ; Gusakova, S. V. ; Kovalev, I. V. ; Petrova, I. V. ; Nosarev, A. V.</creator><creatorcontrib>Smagliy, L. V. ; Yartseva, Yu. O. ; Rydchenko, V. S. ; Birulina, Yu. G. ; Gusakova, S. V. ; Kovalev, I. V. ; Petrova, I. V. ; Nosarev, A. V.</creatorcontrib><description>We studied the role of carbon monoxide (CO) in the effect of P2X and P2Y receptor agonist ATP on the tone of rat aorta segments with intact endothelium. ATP (1-1000 μM) and P2X receptor agonist α,β-MeATP (100 μM) relaxed segments precontracted with phenylephrine (10 μM), while UTP (100-1000 μM) increased the amplitude of phenylephrine-induced contraction. The relaxing effect of ATP was enhanced by CORM II (100 μM), NO synthase inhibitor L-NAME, and guanylate cyclase inhibitor ODQ and attenuated by ZnPP IX (100 μM). The constrictive effect of UTP was weakened by CORM II (100 μM), but was not changed by ZnPP IX (100 μM). ZnPP IX (100 μM) weakened the relaxation response to α,β-MeATP. Thus, ATP involves the CO-dependent signaling cascade through P2X receptors.</description><identifier>ISSN: 0007-4888</identifier><identifier>EISSN: 1573-8221</identifier><identifier>DOI: 10.1007/s10517-019-04527-8</identifier><identifier>PMID: 31346880</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Adenosine Triphosphate - metabolism ; Agonists ; Animals ; Aorta ; Aorta - cytology ; Aorta - physiology ; Biomedical and Life Sciences ; Biomedicine ; Carbon monoxide ; Carbon Monoxide - pharmacology ; Cell Biology ; Cells, Cultured ; Contraction ; Endothelium ; Endothelium - cytology ; Endothelium - drug effects ; Endothelium - physiology ; Guanylate cyclase ; Internal Medicine ; Laboratory Medicine ; Muscle contraction ; Muscle Contraction - drug effects ; Muscle, Smooth, Vascular - drug effects ; NG-Nitroarginine methyl ester ; NG-Nitroarginine Methyl Ester - pharmacology ; Nitric oxide ; Nitric-oxide synthase ; Organometallic Compounds - pharmacology ; Oxadiazoles - pharmacology ; Pathology ; Phenylephrine ; Phenylephrine - pharmacology ; Protoporphyrins - pharmacology ; Purinergic P2X Receptor Agonists - pharmacology ; Purinergic P2Y Receptor Agonists - pharmacology ; Quinoxalines - pharmacology ; Rats ; Rats, Wistar ; Receptors, Purinergic P2X - metabolism ; Receptors, Purinergic P2Y - metabolism ; Smooth muscle</subject><ispartof>Bulletin of experimental biology and medicine, 2019-07, Vol.167 (3), p.363-366</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Bulletin of Experimental Biology and Medicine is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c424t-9a10a756c2441266a2793031446bd775c582eb3b613667ee86af9909e1e7c4913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10517-019-04527-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10517-019-04527-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31346880$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Smagliy, L. V.</creatorcontrib><creatorcontrib>Yartseva, Yu. O.</creatorcontrib><creatorcontrib>Rydchenko, V. S.</creatorcontrib><creatorcontrib>Birulina, Yu. G.</creatorcontrib><creatorcontrib>Gusakova, S. V.</creatorcontrib><creatorcontrib>Kovalev, I. V.</creatorcontrib><creatorcontrib>Petrova, I. V.</creatorcontrib><creatorcontrib>Nosarev, A. V.</creatorcontrib><title>Role of Carbon Monoxide in the Mechanisms of Action of Extracellular ATP on Contractile Activity of Vascular Smooth Muscle Cells</title><title>Bulletin of experimental biology and medicine</title><addtitle>Bull Exp Biol Med</addtitle><addtitle>Bull Exp Biol Med</addtitle><description>We studied the role of carbon monoxide (CO) in the effect of P2X and P2Y receptor agonist ATP on the tone of rat aorta segments with intact endothelium. ATP (1-1000 μM) and P2X receptor agonist α,β-MeATP (100 μM) relaxed segments precontracted with phenylephrine (10 μM), while UTP (100-1000 μM) increased the amplitude of phenylephrine-induced contraction. The relaxing effect of ATP was enhanced by CORM II (100 μM), NO synthase inhibitor L-NAME, and guanylate cyclase inhibitor ODQ and attenuated by ZnPP IX (100 μM). The constrictive effect of UTP was weakened by CORM II (100 μM), but was not changed by ZnPP IX (100 μM). ZnPP IX (100 μM) weakened the relaxation response to α,β-MeATP. Thus, ATP involves the CO-dependent signaling cascade through P2X receptors.</description><subject>Adenosine Triphosphate - metabolism</subject><subject>Agonists</subject><subject>Animals</subject><subject>Aorta</subject><subject>Aorta - cytology</subject><subject>Aorta - physiology</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Carbon monoxide</subject><subject>Carbon Monoxide - pharmacology</subject><subject>Cell Biology</subject><subject>Cells, Cultured</subject><subject>Contraction</subject><subject>Endothelium</subject><subject>Endothelium - cytology</subject><subject>Endothelium - drug effects</subject><subject>Endothelium - physiology</subject><subject>Guanylate cyclase</subject><subject>Internal Medicine</subject><subject>Laboratory Medicine</subject><subject>Muscle contraction</subject><subject>Muscle Contraction - drug effects</subject><subject>Muscle, Smooth, Vascular - drug effects</subject><subject>NG-Nitroarginine methyl ester</subject><subject>NG-Nitroarginine Methyl Ester - pharmacology</subject><subject>Nitric oxide</subject><subject>Nitric-oxide synthase</subject><subject>Organometallic Compounds - pharmacology</subject><subject>Oxadiazoles - pharmacology</subject><subject>Pathology</subject><subject>Phenylephrine</subject><subject>Phenylephrine - pharmacology</subject><subject>Protoporphyrins - pharmacology</subject><subject>Purinergic P2X Receptor Agonists - pharmacology</subject><subject>Purinergic P2Y Receptor Agonists - pharmacology</subject><subject>Quinoxalines - pharmacology</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>Receptors, Purinergic P2X - metabolism</subject><subject>Receptors, Purinergic P2Y - metabolism</subject><subject>Smooth muscle</subject><issn>0007-4888</issn><issn>1573-8221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kk1rFTEUhoMo9lr9Ay5kQChupuZrkszyMtQP6EXR6jbk5p7ppMwkNZmRdudPN-mt1opIFklOnvflnPAi9JzgY4KxfJ0IboisMWlrzBsqa_UArUgjWa0oJQ_RCmeq5kqpA_QkpYtyxYI8RgeMMC6Uwiv041MYoQp91Zm4Db7aBB-u3A4q56t5gGoDdjDepSkVaG1nl6F8Ormao7EwjstoYrU--1jlehd8qc4uWxb0u5uvC_zVJHvDfZ5CmIdqsySbkS7L01P0qDdjgme3-yH68ubkrHtXn354-75bn9aWUz7XrSHYyEZYyjmhQhgqW4YZ4Vxsd1I2tlEUtmwrCBNCAihh-rbFLRCQlreEHaJXe9_LGL4tkGY9uVQGMB7CkjSlopESE1bQl3-hF2GJPndXKM4VJqS5o87NCNr5PpTZi6leN63KXXPGMnX8DyqvHUzOBg99_qz7gqM_BAOYcR5SGJfy8ek-SPegjSGlCL2-jG4y8VoTrEs-9D4fOudD3-RDqyx6cTvasp1g91vyKxAZYHsg5Sd_DvFu9v_Y_gQ8v8F4</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Smagliy, L. V.</creator><creator>Yartseva, Yu. O.</creator><creator>Rydchenko, V. S.</creator><creator>Birulina, Yu. G.</creator><creator>Gusakova, S. V.</creator><creator>Kovalev, I. V.</creator><creator>Petrova, I. V.</creator><creator>Nosarev, A. V.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope></search><sort><creationdate>20190701</creationdate><title>Role of Carbon Monoxide in the Mechanisms of Action of Extracellular ATP on Contractile Activity of Vascular Smooth Muscle Cells</title><author>Smagliy, L. V. ; Yartseva, Yu. O. ; Rydchenko, V. S. ; Birulina, Yu. G. ; Gusakova, S. V. ; Kovalev, I. V. ; Petrova, I. V. ; Nosarev, A. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-9a10a756c2441266a2793031446bd775c582eb3b613667ee86af9909e1e7c4913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adenosine Triphosphate - metabolism</topic><topic>Agonists</topic><topic>Animals</topic><topic>Aorta</topic><topic>Aorta - cytology</topic><topic>Aorta - physiology</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Carbon monoxide</topic><topic>Carbon Monoxide - pharmacology</topic><topic>Cell Biology</topic><topic>Cells, Cultured</topic><topic>Contraction</topic><topic>Endothelium</topic><topic>Endothelium - cytology</topic><topic>Endothelium - drug effects</topic><topic>Endothelium - physiology</topic><topic>Guanylate cyclase</topic><topic>Internal Medicine</topic><topic>Laboratory Medicine</topic><topic>Muscle contraction</topic><topic>Muscle Contraction - drug effects</topic><topic>Muscle, Smooth, Vascular - drug effects</topic><topic>NG-Nitroarginine methyl ester</topic><topic>NG-Nitroarginine Methyl Ester - pharmacology</topic><topic>Nitric oxide</topic><topic>Nitric-oxide synthase</topic><topic>Organometallic Compounds - pharmacology</topic><topic>Oxadiazoles - pharmacology</topic><topic>Pathology</topic><topic>Phenylephrine</topic><topic>Phenylephrine - pharmacology</topic><topic>Protoporphyrins - pharmacology</topic><topic>Purinergic P2X Receptor Agonists - pharmacology</topic><topic>Purinergic P2Y Receptor Agonists - pharmacology</topic><topic>Quinoxalines - pharmacology</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>Receptors, Purinergic P2X - metabolism</topic><topic>Receptors, Purinergic P2Y - metabolism</topic><topic>Smooth muscle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smagliy, L. V.</creatorcontrib><creatorcontrib>Yartseva, Yu. O.</creatorcontrib><creatorcontrib>Rydchenko, V. S.</creatorcontrib><creatorcontrib>Birulina, Yu. G.</creatorcontrib><creatorcontrib>Gusakova, S. V.</creatorcontrib><creatorcontrib>Kovalev, I. V.</creatorcontrib><creatorcontrib>Petrova, I. V.</creatorcontrib><creatorcontrib>Nosarev, A. V.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Bulletin of experimental biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smagliy, L. V.</au><au>Yartseva, Yu. O.</au><au>Rydchenko, V. S.</au><au>Birulina, Yu. G.</au><au>Gusakova, S. V.</au><au>Kovalev, I. V.</au><au>Petrova, I. V.</au><au>Nosarev, A. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of Carbon Monoxide in the Mechanisms of Action of Extracellular ATP on Contractile Activity of Vascular Smooth Muscle Cells</atitle><jtitle>Bulletin of experimental biology and medicine</jtitle><stitle>Bull Exp Biol Med</stitle><addtitle>Bull Exp Biol Med</addtitle><date>2019-07-01</date><risdate>2019</risdate><volume>167</volume><issue>3</issue><spage>363</spage><epage>366</epage><pages>363-366</pages><issn>0007-4888</issn><eissn>1573-8221</eissn><abstract>We studied the role of carbon monoxide (CO) in the effect of P2X and P2Y receptor agonist ATP on the tone of rat aorta segments with intact endothelium. ATP (1-1000 μM) and P2X receptor agonist α,β-MeATP (100 μM) relaxed segments precontracted with phenylephrine (10 μM), while UTP (100-1000 μM) increased the amplitude of phenylephrine-induced contraction. The relaxing effect of ATP was enhanced by CORM II (100 μM), NO synthase inhibitor L-NAME, and guanylate cyclase inhibitor ODQ and attenuated by ZnPP IX (100 μM). The constrictive effect of UTP was weakened by CORM II (100 μM), but was not changed by ZnPP IX (100 μM). ZnPP IX (100 μM) weakened the relaxation response to α,β-MeATP. Thus, ATP involves the CO-dependent signaling cascade through P2X receptors.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>31346880</pmid><doi>10.1007/s10517-019-04527-8</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0007-4888
ispartof Bulletin of experimental biology and medicine, 2019-07, Vol.167 (3), p.363-366
issn 0007-4888
1573-8221
language eng
recordid cdi_proquest_miscellaneous_2265770131
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Adenosine Triphosphate - metabolism
Agonists
Animals
Aorta
Aorta - cytology
Aorta - physiology
Biomedical and Life Sciences
Biomedicine
Carbon monoxide
Carbon Monoxide - pharmacology
Cell Biology
Cells, Cultured
Contraction
Endothelium
Endothelium - cytology
Endothelium - drug effects
Endothelium - physiology
Guanylate cyclase
Internal Medicine
Laboratory Medicine
Muscle contraction
Muscle Contraction - drug effects
Muscle, Smooth, Vascular - drug effects
NG-Nitroarginine methyl ester
NG-Nitroarginine Methyl Ester - pharmacology
Nitric oxide
Nitric-oxide synthase
Organometallic Compounds - pharmacology
Oxadiazoles - pharmacology
Pathology
Phenylephrine
Phenylephrine - pharmacology
Protoporphyrins - pharmacology
Purinergic P2X Receptor Agonists - pharmacology
Purinergic P2Y Receptor Agonists - pharmacology
Quinoxalines - pharmacology
Rats
Rats, Wistar
Receptors, Purinergic P2X - metabolism
Receptors, Purinergic P2Y - metabolism
Smooth muscle
title Role of Carbon Monoxide in the Mechanisms of Action of Extracellular ATP on Contractile Activity of Vascular Smooth Muscle Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T13%3A13%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20Carbon%20Monoxide%20in%20the%20Mechanisms%20of%20Action%20of%20Extracellular%20ATP%20on%20Contractile%20Activity%20of%20Vascular%20Smooth%20Muscle%20Cells&rft.jtitle=Bulletin%20of%20experimental%20biology%20and%20medicine&rft.au=Smagliy,%20L.%20V.&rft.date=2019-07-01&rft.volume=167&rft.issue=3&rft.spage=363&rft.epage=366&rft.pages=363-366&rft.issn=0007-4888&rft.eissn=1573-8221&rft_id=info:doi/10.1007/s10517-019-04527-8&rft_dat=%3Cgale_proqu%3EA598424433%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2264480115&rft_id=info:pmid/31346880&rft_galeid=A598424433&rfr_iscdi=true