Role of Carbon Monoxide in the Mechanisms of Action of Extracellular ATP on Contractile Activity of Vascular Smooth Muscle Cells
We studied the role of carbon monoxide (CO) in the effect of P2X and P2Y receptor agonist ATP on the tone of rat aorta segments with intact endothelium. ATP (1-1000 μM) and P2X receptor agonist α,β-MeATP (100 μM) relaxed segments precontracted with phenylephrine (10 μM), while UTP (100-1000 μM) incr...
Gespeichert in:
Veröffentlicht in: | Bulletin of experimental biology and medicine 2019-07, Vol.167 (3), p.363-366 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 366 |
---|---|
container_issue | 3 |
container_start_page | 363 |
container_title | Bulletin of experimental biology and medicine |
container_volume | 167 |
creator | Smagliy, L. V. Yartseva, Yu. O. Rydchenko, V. S. Birulina, Yu. G. Gusakova, S. V. Kovalev, I. V. Petrova, I. V. Nosarev, A. V. |
description | We studied the role of carbon monoxide (CO) in the effect of P2X and P2Y receptor agonist ATP on the tone of rat aorta segments with intact endothelium. ATP (1-1000 μM) and P2X receptor agonist α,β-MeATP (100 μM) relaxed segments precontracted with phenylephrine (10 μM), while UTP (100-1000 μM) increased the amplitude of phenylephrine-induced contraction. The relaxing effect of ATP was enhanced by CORM II (100 μM), NO synthase inhibitor L-NAME, and guanylate cyclase inhibitor ODQ and attenuated by ZnPP IX (100 μM). The constrictive effect of UTP was weakened by CORM II (100 μM), but was not changed by ZnPP IX (100 μM). ZnPP IX (100 μM) weakened the relaxation response to α,β-MeATP. Thus, ATP involves the CO-dependent signaling cascade through P2X receptors. |
doi_str_mv | 10.1007/s10517-019-04527-8 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2265770131</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A598424433</galeid><sourcerecordid>A598424433</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-9a10a756c2441266a2793031446bd775c582eb3b613667ee86af9909e1e7c4913</originalsourceid><addsrcrecordid>eNp9kk1rFTEUhoMo9lr9Ay5kQChupuZrkszyMtQP6EXR6jbk5p7ppMwkNZmRdudPN-mt1opIFklOnvflnPAi9JzgY4KxfJ0IboisMWlrzBsqa_UArUgjWa0oJQ_RCmeq5kqpA_QkpYtyxYI8RgeMMC6Uwiv041MYoQp91Zm4Db7aBB-u3A4q56t5gGoDdjDepSkVaG1nl6F8Ormao7EwjstoYrU--1jlehd8qc4uWxb0u5uvC_zVJHvDfZ5CmIdqsySbkS7L01P0qDdjgme3-yH68ubkrHtXn354-75bn9aWUz7XrSHYyEZYyjmhQhgqW4YZ4Vxsd1I2tlEUtmwrCBNCAihh-rbFLRCQlreEHaJXe9_LGL4tkGY9uVQGMB7CkjSlopESE1bQl3-hF2GJPndXKM4VJqS5o87NCNr5PpTZi6leN63KXXPGMnX8DyqvHUzOBg99_qz7gqM_BAOYcR5SGJfy8ek-SPegjSGlCL2-jG4y8VoTrEs-9D4fOudD3-RDqyx6cTvasp1g91vyKxAZYHsg5Sd_DvFu9v_Y_gQ8v8F4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2264480115</pqid></control><display><type>article</type><title>Role of Carbon Monoxide in the Mechanisms of Action of Extracellular ATP on Contractile Activity of Vascular Smooth Muscle Cells</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Smagliy, L. V. ; Yartseva, Yu. O. ; Rydchenko, V. S. ; Birulina, Yu. G. ; Gusakova, S. V. ; Kovalev, I. V. ; Petrova, I. V. ; Nosarev, A. V.</creator><creatorcontrib>Smagliy, L. V. ; Yartseva, Yu. O. ; Rydchenko, V. S. ; Birulina, Yu. G. ; Gusakova, S. V. ; Kovalev, I. V. ; Petrova, I. V. ; Nosarev, A. V.</creatorcontrib><description>We studied the role of carbon monoxide (CO) in the effect of P2X and P2Y receptor agonist ATP on the tone of rat aorta segments with intact endothelium. ATP (1-1000 μM) and P2X receptor agonist α,β-MeATP (100 μM) relaxed segments precontracted with phenylephrine (10 μM), while UTP (100-1000 μM) increased the amplitude of phenylephrine-induced contraction. The relaxing effect of ATP was enhanced by CORM II (100 μM), NO synthase inhibitor L-NAME, and guanylate cyclase inhibitor ODQ and attenuated by ZnPP IX (100 μM). The constrictive effect of UTP was weakened by CORM II (100 μM), but was not changed by ZnPP IX (100 μM). ZnPP IX (100 μM) weakened the relaxation response to α,β-MeATP. Thus, ATP involves the CO-dependent signaling cascade through P2X receptors.</description><identifier>ISSN: 0007-4888</identifier><identifier>EISSN: 1573-8221</identifier><identifier>DOI: 10.1007/s10517-019-04527-8</identifier><identifier>PMID: 31346880</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Adenosine Triphosphate - metabolism ; Agonists ; Animals ; Aorta ; Aorta - cytology ; Aorta - physiology ; Biomedical and Life Sciences ; Biomedicine ; Carbon monoxide ; Carbon Monoxide - pharmacology ; Cell Biology ; Cells, Cultured ; Contraction ; Endothelium ; Endothelium - cytology ; Endothelium - drug effects ; Endothelium - physiology ; Guanylate cyclase ; Internal Medicine ; Laboratory Medicine ; Muscle contraction ; Muscle Contraction - drug effects ; Muscle, Smooth, Vascular - drug effects ; NG-Nitroarginine methyl ester ; NG-Nitroarginine Methyl Ester - pharmacology ; Nitric oxide ; Nitric-oxide synthase ; Organometallic Compounds - pharmacology ; Oxadiazoles - pharmacology ; Pathology ; Phenylephrine ; Phenylephrine - pharmacology ; Protoporphyrins - pharmacology ; Purinergic P2X Receptor Agonists - pharmacology ; Purinergic P2Y Receptor Agonists - pharmacology ; Quinoxalines - pharmacology ; Rats ; Rats, Wistar ; Receptors, Purinergic P2X - metabolism ; Receptors, Purinergic P2Y - metabolism ; Smooth muscle</subject><ispartof>Bulletin of experimental biology and medicine, 2019-07, Vol.167 (3), p.363-366</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Bulletin of Experimental Biology and Medicine is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c424t-9a10a756c2441266a2793031446bd775c582eb3b613667ee86af9909e1e7c4913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10517-019-04527-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10517-019-04527-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31346880$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Smagliy, L. V.</creatorcontrib><creatorcontrib>Yartseva, Yu. O.</creatorcontrib><creatorcontrib>Rydchenko, V. S.</creatorcontrib><creatorcontrib>Birulina, Yu. G.</creatorcontrib><creatorcontrib>Gusakova, S. V.</creatorcontrib><creatorcontrib>Kovalev, I. V.</creatorcontrib><creatorcontrib>Petrova, I. V.</creatorcontrib><creatorcontrib>Nosarev, A. V.</creatorcontrib><title>Role of Carbon Monoxide in the Mechanisms of Action of Extracellular ATP on Contractile Activity of Vascular Smooth Muscle Cells</title><title>Bulletin of experimental biology and medicine</title><addtitle>Bull Exp Biol Med</addtitle><addtitle>Bull Exp Biol Med</addtitle><description>We studied the role of carbon monoxide (CO) in the effect of P2X and P2Y receptor agonist ATP on the tone of rat aorta segments with intact endothelium. ATP (1-1000 μM) and P2X receptor agonist α,β-MeATP (100 μM) relaxed segments precontracted with phenylephrine (10 μM), while UTP (100-1000 μM) increased the amplitude of phenylephrine-induced contraction. The relaxing effect of ATP was enhanced by CORM II (100 μM), NO synthase inhibitor L-NAME, and guanylate cyclase inhibitor ODQ and attenuated by ZnPP IX (100 μM). The constrictive effect of UTP was weakened by CORM II (100 μM), but was not changed by ZnPP IX (100 μM). ZnPP IX (100 μM) weakened the relaxation response to α,β-MeATP. Thus, ATP involves the CO-dependent signaling cascade through P2X receptors.</description><subject>Adenosine Triphosphate - metabolism</subject><subject>Agonists</subject><subject>Animals</subject><subject>Aorta</subject><subject>Aorta - cytology</subject><subject>Aorta - physiology</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Carbon monoxide</subject><subject>Carbon Monoxide - pharmacology</subject><subject>Cell Biology</subject><subject>Cells, Cultured</subject><subject>Contraction</subject><subject>Endothelium</subject><subject>Endothelium - cytology</subject><subject>Endothelium - drug effects</subject><subject>Endothelium - physiology</subject><subject>Guanylate cyclase</subject><subject>Internal Medicine</subject><subject>Laboratory Medicine</subject><subject>Muscle contraction</subject><subject>Muscle Contraction - drug effects</subject><subject>Muscle, Smooth, Vascular - drug effects</subject><subject>NG-Nitroarginine methyl ester</subject><subject>NG-Nitroarginine Methyl Ester - pharmacology</subject><subject>Nitric oxide</subject><subject>Nitric-oxide synthase</subject><subject>Organometallic Compounds - pharmacology</subject><subject>Oxadiazoles - pharmacology</subject><subject>Pathology</subject><subject>Phenylephrine</subject><subject>Phenylephrine - pharmacology</subject><subject>Protoporphyrins - pharmacology</subject><subject>Purinergic P2X Receptor Agonists - pharmacology</subject><subject>Purinergic P2Y Receptor Agonists - pharmacology</subject><subject>Quinoxalines - pharmacology</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>Receptors, Purinergic P2X - metabolism</subject><subject>Receptors, Purinergic P2Y - metabolism</subject><subject>Smooth muscle</subject><issn>0007-4888</issn><issn>1573-8221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kk1rFTEUhoMo9lr9Ay5kQChupuZrkszyMtQP6EXR6jbk5p7ppMwkNZmRdudPN-mt1opIFklOnvflnPAi9JzgY4KxfJ0IboisMWlrzBsqa_UArUgjWa0oJQ_RCmeq5kqpA_QkpYtyxYI8RgeMMC6Uwiv041MYoQp91Zm4Db7aBB-u3A4q56t5gGoDdjDepSkVaG1nl6F8Ormao7EwjstoYrU--1jlehd8qc4uWxb0u5uvC_zVJHvDfZ5CmIdqsySbkS7L01P0qDdjgme3-yH68ubkrHtXn354-75bn9aWUz7XrSHYyEZYyjmhQhgqW4YZ4Vxsd1I2tlEUtmwrCBNCAihh-rbFLRCQlreEHaJXe9_LGL4tkGY9uVQGMB7CkjSlopESE1bQl3-hF2GJPndXKM4VJqS5o87NCNr5PpTZi6leN63KXXPGMnX8DyqvHUzOBg99_qz7gqM_BAOYcR5SGJfy8ek-SPegjSGlCL2-jG4y8VoTrEs-9D4fOudD3-RDqyx6cTvasp1g91vyKxAZYHsg5Sd_DvFu9v_Y_gQ8v8F4</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Smagliy, L. V.</creator><creator>Yartseva, Yu. O.</creator><creator>Rydchenko, V. S.</creator><creator>Birulina, Yu. G.</creator><creator>Gusakova, S. V.</creator><creator>Kovalev, I. V.</creator><creator>Petrova, I. V.</creator><creator>Nosarev, A. V.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope></search><sort><creationdate>20190701</creationdate><title>Role of Carbon Monoxide in the Mechanisms of Action of Extracellular ATP on Contractile Activity of Vascular Smooth Muscle Cells</title><author>Smagliy, L. V. ; Yartseva, Yu. O. ; Rydchenko, V. S. ; Birulina, Yu. G. ; Gusakova, S. V. ; Kovalev, I. V. ; Petrova, I. V. ; Nosarev, A. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-9a10a756c2441266a2793031446bd775c582eb3b613667ee86af9909e1e7c4913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adenosine Triphosphate - metabolism</topic><topic>Agonists</topic><topic>Animals</topic><topic>Aorta</topic><topic>Aorta - cytology</topic><topic>Aorta - physiology</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Carbon monoxide</topic><topic>Carbon Monoxide - pharmacology</topic><topic>Cell Biology</topic><topic>Cells, Cultured</topic><topic>Contraction</topic><topic>Endothelium</topic><topic>Endothelium - cytology</topic><topic>Endothelium - drug effects</topic><topic>Endothelium - physiology</topic><topic>Guanylate cyclase</topic><topic>Internal Medicine</topic><topic>Laboratory Medicine</topic><topic>Muscle contraction</topic><topic>Muscle Contraction - drug effects</topic><topic>Muscle, Smooth, Vascular - drug effects</topic><topic>NG-Nitroarginine methyl ester</topic><topic>NG-Nitroarginine Methyl Ester - pharmacology</topic><topic>Nitric oxide</topic><topic>Nitric-oxide synthase</topic><topic>Organometallic Compounds - pharmacology</topic><topic>Oxadiazoles - pharmacology</topic><topic>Pathology</topic><topic>Phenylephrine</topic><topic>Phenylephrine - pharmacology</topic><topic>Protoporphyrins - pharmacology</topic><topic>Purinergic P2X Receptor Agonists - pharmacology</topic><topic>Purinergic P2Y Receptor Agonists - pharmacology</topic><topic>Quinoxalines - pharmacology</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>Receptors, Purinergic P2X - metabolism</topic><topic>Receptors, Purinergic P2Y - metabolism</topic><topic>Smooth muscle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smagliy, L. V.</creatorcontrib><creatorcontrib>Yartseva, Yu. O.</creatorcontrib><creatorcontrib>Rydchenko, V. S.</creatorcontrib><creatorcontrib>Birulina, Yu. G.</creatorcontrib><creatorcontrib>Gusakova, S. V.</creatorcontrib><creatorcontrib>Kovalev, I. V.</creatorcontrib><creatorcontrib>Petrova, I. V.</creatorcontrib><creatorcontrib>Nosarev, A. V.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Bulletin of experimental biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smagliy, L. V.</au><au>Yartseva, Yu. O.</au><au>Rydchenko, V. S.</au><au>Birulina, Yu. G.</au><au>Gusakova, S. V.</au><au>Kovalev, I. V.</au><au>Petrova, I. V.</au><au>Nosarev, A. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of Carbon Monoxide in the Mechanisms of Action of Extracellular ATP on Contractile Activity of Vascular Smooth Muscle Cells</atitle><jtitle>Bulletin of experimental biology and medicine</jtitle><stitle>Bull Exp Biol Med</stitle><addtitle>Bull Exp Biol Med</addtitle><date>2019-07-01</date><risdate>2019</risdate><volume>167</volume><issue>3</issue><spage>363</spage><epage>366</epage><pages>363-366</pages><issn>0007-4888</issn><eissn>1573-8221</eissn><abstract>We studied the role of carbon monoxide (CO) in the effect of P2X and P2Y receptor agonist ATP on the tone of rat aorta segments with intact endothelium. ATP (1-1000 μM) and P2X receptor agonist α,β-MeATP (100 μM) relaxed segments precontracted with phenylephrine (10 μM), while UTP (100-1000 μM) increased the amplitude of phenylephrine-induced contraction. The relaxing effect of ATP was enhanced by CORM II (100 μM), NO synthase inhibitor L-NAME, and guanylate cyclase inhibitor ODQ and attenuated by ZnPP IX (100 μM). The constrictive effect of UTP was weakened by CORM II (100 μM), but was not changed by ZnPP IX (100 μM). ZnPP IX (100 μM) weakened the relaxation response to α,β-MeATP. Thus, ATP involves the CO-dependent signaling cascade through P2X receptors.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>31346880</pmid><doi>10.1007/s10517-019-04527-8</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0007-4888 |
ispartof | Bulletin of experimental biology and medicine, 2019-07, Vol.167 (3), p.363-366 |
issn | 0007-4888 1573-8221 |
language | eng |
recordid | cdi_proquest_miscellaneous_2265770131 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Adenosine Triphosphate - metabolism Agonists Animals Aorta Aorta - cytology Aorta - physiology Biomedical and Life Sciences Biomedicine Carbon monoxide Carbon Monoxide - pharmacology Cell Biology Cells, Cultured Contraction Endothelium Endothelium - cytology Endothelium - drug effects Endothelium - physiology Guanylate cyclase Internal Medicine Laboratory Medicine Muscle contraction Muscle Contraction - drug effects Muscle, Smooth, Vascular - drug effects NG-Nitroarginine methyl ester NG-Nitroarginine Methyl Ester - pharmacology Nitric oxide Nitric-oxide synthase Organometallic Compounds - pharmacology Oxadiazoles - pharmacology Pathology Phenylephrine Phenylephrine - pharmacology Protoporphyrins - pharmacology Purinergic P2X Receptor Agonists - pharmacology Purinergic P2Y Receptor Agonists - pharmacology Quinoxalines - pharmacology Rats Rats, Wistar Receptors, Purinergic P2X - metabolism Receptors, Purinergic P2Y - metabolism Smooth muscle |
title | Role of Carbon Monoxide in the Mechanisms of Action of Extracellular ATP on Contractile Activity of Vascular Smooth Muscle Cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T13%3A13%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20Carbon%20Monoxide%20in%20the%20Mechanisms%20of%20Action%20of%20Extracellular%20ATP%20on%20Contractile%20Activity%20of%20Vascular%20Smooth%20Muscle%20Cells&rft.jtitle=Bulletin%20of%20experimental%20biology%20and%20medicine&rft.au=Smagliy,%20L.%20V.&rft.date=2019-07-01&rft.volume=167&rft.issue=3&rft.spage=363&rft.epage=366&rft.pages=363-366&rft.issn=0007-4888&rft.eissn=1573-8221&rft_id=info:doi/10.1007/s10517-019-04527-8&rft_dat=%3Cgale_proqu%3EA598424433%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2264480115&rft_id=info:pmid/31346880&rft_galeid=A598424433&rfr_iscdi=true |