How did life come to tolerate and thrive in an oxygenated world?

Looking across our planet's four-and-a-half billion-year history, the rise of dioxygen—an interval sometimes called the Great Oxygenation Event (GOE)—is arguably the most important environmental change. This revolution occurred approximately 2.3 billion years ago, roughly at the mid-way point i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Free radical biology & medicine 2019-08, Vol.140, p.1-3
Hauptverfasser: Fischer, Woodward W., Valentine, Joan Selverstone
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3
container_issue
container_start_page 1
container_title Free radical biology & medicine
container_volume 140
creator Fischer, Woodward W.
Valentine, Joan Selverstone
description Looking across our planet's four-and-a-half billion-year history, the rise of dioxygen—an interval sometimes called the Great Oxygenation Event (GOE)—is arguably the most important environmental change. This revolution occurred approximately 2.3 billion years ago, roughly at the mid-way point in Earth history, and it was ultimately driven by a biological innovation: the evolution of oxygenic photosynthesis. The evolution of oxygenic photosynthesis conferred the ability to use water as a photosynthetic substrate (earlier photosynthesis was anoxygenic and required reduced iron, sulfur, carbon, or hydrogen). Primary productivity—no longer limited by a source of electrons—greatly expanded across the Earth surface. In turn, dioxygen accumulated and became widely available for use in anabolic and catabolic metabolisms, forming a rich cascade of evolutionary potential and consequence. The modern biosphere figured out how to balance harmful oxidative stress with the beneficial ways dioxygen can be used. But how did life come to first tolerate and then thrive in an oxygenated world? It's this question that attracted the diverse perspectives reflected in this special issue.
doi_str_mv 10.1016/j.freeradbiomed.2019.07.021
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2265769307</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0891584919312031</els_id><sourcerecordid>2265769307</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-d670f8b72659bbfb1bfaf0b819d2429d5e7f16a29e81660eb1c6ab70d3148a03</originalsourceid><addsrcrecordid>eNqNkMtqHDEQRYVxiMdOfiEIsvGm26VWtx5kkRjjR8CQjfdCapUcDT0tR-rx4--tYexFdoaCoqhb91KHkO8MWgZMnK3bkBGz9S6mDfq2A6ZbkC107ICsmJK86QctDskKlGbNoHp9RI5LWQNAP3D1mRxxxvu-52JFft2kJ-qjp1MMSMdqSJdUa6oBC1I7e7r8zfERaZzrRNPzyz3OdeXpU8qT__mFfAp2Kvj1rZ-Qu6vLu4ub5vbP9e-L89tm5IovjRcSgnKyE4N2Ljjmgg3gFNO-6zvtB5SBCdtpVEwIQMdGYZ0Ez1mvLPATcrq3fcjp3xbLYjaxjDhNdsa0LaarxlJoDrJKf-ylY06lZAzmIceNzS-GgdkRNGvzH0GzI2hAmkqwXn97C9q63e799h1ZFVzuBVi_fYyYTRkjziP6mHFcjE_xQ0GvBmCI_A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2265769307</pqid></control><display><type>article</type><title>How did life come to tolerate and thrive in an oxygenated world?</title><source>Access via ScienceDirect (Elsevier)</source><creator>Fischer, Woodward W. ; Valentine, Joan Selverstone</creator><creatorcontrib>Fischer, Woodward W. ; Valentine, Joan Selverstone</creatorcontrib><description>Looking across our planet's four-and-a-half billion-year history, the rise of dioxygen—an interval sometimes called the Great Oxygenation Event (GOE)—is arguably the most important environmental change. This revolution occurred approximately 2.3 billion years ago, roughly at the mid-way point in Earth history, and it was ultimately driven by a biological innovation: the evolution of oxygenic photosynthesis. The evolution of oxygenic photosynthesis conferred the ability to use water as a photosynthetic substrate (earlier photosynthesis was anoxygenic and required reduced iron, sulfur, carbon, or hydrogen). Primary productivity—no longer limited by a source of electrons—greatly expanded across the Earth surface. In turn, dioxygen accumulated and became widely available for use in anabolic and catabolic metabolisms, forming a rich cascade of evolutionary potential and consequence. The modern biosphere figured out how to balance harmful oxidative stress with the beneficial ways dioxygen can be used. But how did life come to first tolerate and then thrive in an oxygenated world? It's this question that attracted the diverse perspectives reflected in this special issue.</description><identifier>ISSN: 0891-5849</identifier><identifier>EISSN: 1873-4596</identifier><identifier>DOI: 10.1016/j.freeradbiomed.2019.07.021</identifier><identifier>PMID: 31344436</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><ispartof>Free radical biology &amp; medicine, 2019-08, Vol.140, p.1-3</ispartof><rights>2019 Elsevier Inc.</rights><rights>Copyright © 2019 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-d670f8b72659bbfb1bfaf0b819d2429d5e7f16a29e81660eb1c6ab70d3148a03</citedby><cites>FETCH-LOGICAL-c383t-d670f8b72659bbfb1bfaf0b819d2429d5e7f16a29e81660eb1c6ab70d3148a03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.freeradbiomed.2019.07.021$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31344436$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fischer, Woodward W.</creatorcontrib><creatorcontrib>Valentine, Joan Selverstone</creatorcontrib><title>How did life come to tolerate and thrive in an oxygenated world?</title><title>Free radical biology &amp; medicine</title><addtitle>Free Radic Biol Med</addtitle><description>Looking across our planet's four-and-a-half billion-year history, the rise of dioxygen—an interval sometimes called the Great Oxygenation Event (GOE)—is arguably the most important environmental change. This revolution occurred approximately 2.3 billion years ago, roughly at the mid-way point in Earth history, and it was ultimately driven by a biological innovation: the evolution of oxygenic photosynthesis. The evolution of oxygenic photosynthesis conferred the ability to use water as a photosynthetic substrate (earlier photosynthesis was anoxygenic and required reduced iron, sulfur, carbon, or hydrogen). Primary productivity—no longer limited by a source of electrons—greatly expanded across the Earth surface. In turn, dioxygen accumulated and became widely available for use in anabolic and catabolic metabolisms, forming a rich cascade of evolutionary potential and consequence. The modern biosphere figured out how to balance harmful oxidative stress with the beneficial ways dioxygen can be used. But how did life come to first tolerate and then thrive in an oxygenated world? It's this question that attracted the diverse perspectives reflected in this special issue.</description><issn>0891-5849</issn><issn>1873-4596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNkMtqHDEQRYVxiMdOfiEIsvGm26VWtx5kkRjjR8CQjfdCapUcDT0tR-rx4--tYexFdoaCoqhb91KHkO8MWgZMnK3bkBGz9S6mDfq2A6ZbkC107ICsmJK86QctDskKlGbNoHp9RI5LWQNAP3D1mRxxxvu-52JFft2kJ-qjp1MMSMdqSJdUa6oBC1I7e7r8zfERaZzrRNPzyz3OdeXpU8qT__mFfAp2Kvj1rZ-Qu6vLu4ub5vbP9e-L89tm5IovjRcSgnKyE4N2Ljjmgg3gFNO-6zvtB5SBCdtpVEwIQMdGYZ0Ez1mvLPATcrq3fcjp3xbLYjaxjDhNdsa0LaarxlJoDrJKf-ylY06lZAzmIceNzS-GgdkRNGvzH0GzI2hAmkqwXn97C9q63e799h1ZFVzuBVi_fYyYTRkjziP6mHFcjE_xQ0GvBmCI_A</recordid><startdate>20190820</startdate><enddate>20190820</enddate><creator>Fischer, Woodward W.</creator><creator>Valentine, Joan Selverstone</creator><general>Elsevier Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20190820</creationdate><title>How did life come to tolerate and thrive in an oxygenated world?</title><author>Fischer, Woodward W. ; Valentine, Joan Selverstone</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-d670f8b72659bbfb1bfaf0b819d2429d5e7f16a29e81660eb1c6ab70d3148a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fischer, Woodward W.</creatorcontrib><creatorcontrib>Valentine, Joan Selverstone</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Free radical biology &amp; medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fischer, Woodward W.</au><au>Valentine, Joan Selverstone</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How did life come to tolerate and thrive in an oxygenated world?</atitle><jtitle>Free radical biology &amp; medicine</jtitle><addtitle>Free Radic Biol Med</addtitle><date>2019-08-20</date><risdate>2019</risdate><volume>140</volume><spage>1</spage><epage>3</epage><pages>1-3</pages><issn>0891-5849</issn><eissn>1873-4596</eissn><abstract>Looking across our planet's four-and-a-half billion-year history, the rise of dioxygen—an interval sometimes called the Great Oxygenation Event (GOE)—is arguably the most important environmental change. This revolution occurred approximately 2.3 billion years ago, roughly at the mid-way point in Earth history, and it was ultimately driven by a biological innovation: the evolution of oxygenic photosynthesis. The evolution of oxygenic photosynthesis conferred the ability to use water as a photosynthetic substrate (earlier photosynthesis was anoxygenic and required reduced iron, sulfur, carbon, or hydrogen). Primary productivity—no longer limited by a source of electrons—greatly expanded across the Earth surface. In turn, dioxygen accumulated and became widely available for use in anabolic and catabolic metabolisms, forming a rich cascade of evolutionary potential and consequence. The modern biosphere figured out how to balance harmful oxidative stress with the beneficial ways dioxygen can be used. But how did life come to first tolerate and then thrive in an oxygenated world? It's this question that attracted the diverse perspectives reflected in this special issue.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>31344436</pmid><doi>10.1016/j.freeradbiomed.2019.07.021</doi><tpages>3</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0891-5849
ispartof Free radical biology & medicine, 2019-08, Vol.140, p.1-3
issn 0891-5849
1873-4596
language eng
recordid cdi_proquest_miscellaneous_2265769307
source Access via ScienceDirect (Elsevier)
title How did life come to tolerate and thrive in an oxygenated world?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T08%3A24%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20did%20life%20come%20to%20tolerate%20and%20thrive%20in%20an%20oxygenated%20world?&rft.jtitle=Free%20radical%20biology%20&%20medicine&rft.au=Fischer,%20Woodward%20W.&rft.date=2019-08-20&rft.volume=140&rft.spage=1&rft.epage=3&rft.pages=1-3&rft.issn=0891-5849&rft.eissn=1873-4596&rft_id=info:doi/10.1016/j.freeradbiomed.2019.07.021&rft_dat=%3Cproquest_cross%3E2265769307%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2265769307&rft_id=info:pmid/31344436&rft_els_id=S0891584919312031&rfr_iscdi=true