Resolving the energy levels of a nanomechanical oscillator

The quantum nature of an oscillating mechanical object is anything but apparent. The coherent states that describe the classical motion of a mechanical oscillator do not have a well defined energy, but are quantum superpositions of equally spaced energy eigenstates. Revealing this quantized structur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2019-07, Vol.571 (7766), p.537-540
Hauptverfasser: Arrangoiz-Arriola, Patricio, Wollack, E. Alex, Wang, Zhaoyou, Pechal, Marek, Jiang, Wentao, McKenna, Timothy P., Witmer, Jeremy D., Van Laer, Raphaël, Safavi-Naeini, Amir H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 540
container_issue 7766
container_start_page 537
container_title Nature (London)
container_volume 571
creator Arrangoiz-Arriola, Patricio
Wollack, E. Alex
Wang, Zhaoyou
Pechal, Marek
Jiang, Wentao
McKenna, Timothy P.
Witmer, Jeremy D.
Van Laer, Raphaël
Safavi-Naeini, Amir H.
description The quantum nature of an oscillating mechanical object is anything but apparent. The coherent states that describe the classical motion of a mechanical oscillator do not have a well defined energy, but are quantum superpositions of equally spaced energy eigenstates. Revealing this quantized structure is only possible with an apparatus that measures energy with a precision greater than the energy of a single phonon. One way to achieve this sensitivity is by engineering a strong but nonresonant interaction between the oscillator and an atom. In a system with sufficient quantum coherence, this interaction allows one to distinguish different energy eigenstates using resolvable differences in the atom’s transition frequency. For photons, such dispersive measurements have been performed in cavity 1 , 2 and circuit quantum electrodynamics 3 . Here we report an experiment in which an artificial atom senses the motional energy of a driven nanomechanical oscillator with sufficient sensitivity to resolve the quantization of its energy. To realize this, we build a hybrid platform that integrates nanomechanical piezoelectric resonators with a microwave superconducting qubit on the same chip. We excite phonons with resonant pulses and probe the resulting excitation spectrum of the qubit to observe phonon-number-dependent frequency shifts that are about five times larger than the qubit linewidth. Our result demonstrates a fully integrated platform for quantum acoustics that combines large couplings, considerable coherence times and excellent control over the mechanical mode structure. With modest experimental improvements, we expect that our approach will enable quantum nondemolition measurements of phonons 4 and will lead to quantum sensors and information-processing approaches 5 that use chip-scale nanomechanical devices. A hybrid platform comprising a microwave superconducting qubit and a nanomechanical piezoelectric oscillator is used to resolve the phonon number states of the oscillator.
doi_str_mv 10.1038/s41586-019-1386-x
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2264223143</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A594456924</galeid><sourcerecordid>A594456924</sourcerecordid><originalsourceid>FETCH-LOGICAL-c574t-264da8075baa14df09e30a034b321d8e7a2945279e5425578a370e08d24172f13</originalsourceid><addsrcrecordid>eNp10stu1DAUBmALgehQeAA2KIINCKX4GifsRiMulSqQShFLy-OcpK4ce2on1fTtcTSFMmiqLBwl3zm2jn-EXhJ8QjCrPyRORF2VmDQlYfll-wgtCJdVyataPkYLjGld4ppVR-hZSlcYY0Ekf4qOGGGcMMwW6OM5pOBurO-L8RIK8BD728LBDbhUhK7Qhdc-DGAutbdGuyIkY53TY4jP0ZNOuwQv7tZj9PPzp4vV1_Ls-5fT1fKsNELysaQVb3WNpVhrTXjb4QYY1pjxNaOkrUFq2nBBZQOCUyFkrZnEgOuWciJpR9gxervru4nheoI0qsEmA_kQHsKUFM07UMoIZ5m--Y9ehSn6fLpZyTwV0dB71WsHyvoujFGbualaioZzUTWUZ1UeUP08Ie2Ch87mz3v-9QFvNvZa_YtODqD8tDBYc7Dru72CbEbYjr2eUlKnP8737fuH7fLi1-rbviY7bWJIKUKnNtEOOt4qgtUcL7WLl8rxUnO81DbXvLqb77QeoP1b8SdPGdAdSPmX7yHeX8DDXX8DBFjTag</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2267687592</pqid></control><display><type>article</type><title>Resolving the energy levels of a nanomechanical oscillator</title><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Arrangoiz-Arriola, Patricio ; Wollack, E. Alex ; Wang, Zhaoyou ; Pechal, Marek ; Jiang, Wentao ; McKenna, Timothy P. ; Witmer, Jeremy D. ; Van Laer, Raphaël ; Safavi-Naeini, Amir H.</creator><creatorcontrib>Arrangoiz-Arriola, Patricio ; Wollack, E. Alex ; Wang, Zhaoyou ; Pechal, Marek ; Jiang, Wentao ; McKenna, Timothy P. ; Witmer, Jeremy D. ; Van Laer, Raphaël ; Safavi-Naeini, Amir H.</creatorcontrib><description>The quantum nature of an oscillating mechanical object is anything but apparent. The coherent states that describe the classical motion of a mechanical oscillator do not have a well defined energy, but are quantum superpositions of equally spaced energy eigenstates. Revealing this quantized structure is only possible with an apparatus that measures energy with a precision greater than the energy of a single phonon. One way to achieve this sensitivity is by engineering a strong but nonresonant interaction between the oscillator and an atom. In a system with sufficient quantum coherence, this interaction allows one to distinguish different energy eigenstates using resolvable differences in the atom’s transition frequency. For photons, such dispersive measurements have been performed in cavity 1 , 2 and circuit quantum electrodynamics 3 . Here we report an experiment in which an artificial atom senses the motional energy of a driven nanomechanical oscillator with sufficient sensitivity to resolve the quantization of its energy. To realize this, we build a hybrid platform that integrates nanomechanical piezoelectric resonators with a microwave superconducting qubit on the same chip. We excite phonons with resonant pulses and probe the resulting excitation spectrum of the qubit to observe phonon-number-dependent frequency shifts that are about five times larger than the qubit linewidth. Our result demonstrates a fully integrated platform for quantum acoustics that combines large couplings, considerable coherence times and excellent control over the mechanical mode structure. With modest experimental improvements, we expect that our approach will enable quantum nondemolition measurements of phonons 4 and will lead to quantum sensors and information-processing approaches 5 that use chip-scale nanomechanical devices. A hybrid platform comprising a microwave superconducting qubit and a nanomechanical piezoelectric oscillator is used to resolve the phonon number states of the oscillator.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-019-1386-x</identifier><identifier>PMID: 31341303</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/483/1139 ; 639/925/927/1064 ; 639/925/927/359 ; Acoustics ; Circuits ; Coherence ; Couplings ; Eigenvectors ; Energy ; Energy levels ; Energy use ; Excitation spectra ; Experiments ; Humanities and Social Sciences ; Information processing ; Letter ; Mechanical oscillators ; Microelectromechanical systems ; multidisciplinary ; Oscillators (Electronics) ; Phonons ; Photons ; Piezoelectricity ; Quantum dots ; Quantum nondemolition ; Quantum phenomena ; Quantum sensors ; Qubits (quantum computing) ; Science ; Science (multidisciplinary) ; Sensitivity</subject><ispartof>Nature (London), 2019-07, Vol.571 (7766), p.537-540</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><rights>COPYRIGHT 2019 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Jul 25, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c574t-264da8075baa14df09e30a034b321d8e7a2945279e5425578a370e08d24172f13</citedby><cites>FETCH-LOGICAL-c574t-264da8075baa14df09e30a034b321d8e7a2945279e5425578a370e08d24172f13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-019-1386-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-019-1386-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31341303$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Arrangoiz-Arriola, Patricio</creatorcontrib><creatorcontrib>Wollack, E. Alex</creatorcontrib><creatorcontrib>Wang, Zhaoyou</creatorcontrib><creatorcontrib>Pechal, Marek</creatorcontrib><creatorcontrib>Jiang, Wentao</creatorcontrib><creatorcontrib>McKenna, Timothy P.</creatorcontrib><creatorcontrib>Witmer, Jeremy D.</creatorcontrib><creatorcontrib>Van Laer, Raphaël</creatorcontrib><creatorcontrib>Safavi-Naeini, Amir H.</creatorcontrib><title>Resolving the energy levels of a nanomechanical oscillator</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>The quantum nature of an oscillating mechanical object is anything but apparent. The coherent states that describe the classical motion of a mechanical oscillator do not have a well defined energy, but are quantum superpositions of equally spaced energy eigenstates. Revealing this quantized structure is only possible with an apparatus that measures energy with a precision greater than the energy of a single phonon. One way to achieve this sensitivity is by engineering a strong but nonresonant interaction between the oscillator and an atom. In a system with sufficient quantum coherence, this interaction allows one to distinguish different energy eigenstates using resolvable differences in the atom’s transition frequency. For photons, such dispersive measurements have been performed in cavity 1 , 2 and circuit quantum electrodynamics 3 . Here we report an experiment in which an artificial atom senses the motional energy of a driven nanomechanical oscillator with sufficient sensitivity to resolve the quantization of its energy. To realize this, we build a hybrid platform that integrates nanomechanical piezoelectric resonators with a microwave superconducting qubit on the same chip. We excite phonons with resonant pulses and probe the resulting excitation spectrum of the qubit to observe phonon-number-dependent frequency shifts that are about five times larger than the qubit linewidth. Our result demonstrates a fully integrated platform for quantum acoustics that combines large couplings, considerable coherence times and excellent control over the mechanical mode structure. With modest experimental improvements, we expect that our approach will enable quantum nondemolition measurements of phonons 4 and will lead to quantum sensors and information-processing approaches 5 that use chip-scale nanomechanical devices. A hybrid platform comprising a microwave superconducting qubit and a nanomechanical piezoelectric oscillator is used to resolve the phonon number states of the oscillator.</description><subject>639/766/483/1139</subject><subject>639/925/927/1064</subject><subject>639/925/927/359</subject><subject>Acoustics</subject><subject>Circuits</subject><subject>Coherence</subject><subject>Couplings</subject><subject>Eigenvectors</subject><subject>Energy</subject><subject>Energy levels</subject><subject>Energy use</subject><subject>Excitation spectra</subject><subject>Experiments</subject><subject>Humanities and Social Sciences</subject><subject>Information processing</subject><subject>Letter</subject><subject>Mechanical oscillators</subject><subject>Microelectromechanical systems</subject><subject>multidisciplinary</subject><subject>Oscillators (Electronics)</subject><subject>Phonons</subject><subject>Photons</subject><subject>Piezoelectricity</subject><subject>Quantum dots</subject><subject>Quantum nondemolition</subject><subject>Quantum phenomena</subject><subject>Quantum sensors</subject><subject>Qubits (quantum computing)</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Sensitivity</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp10stu1DAUBmALgehQeAA2KIINCKX4GifsRiMulSqQShFLy-OcpK4ce2on1fTtcTSFMmiqLBwl3zm2jn-EXhJ8QjCrPyRORF2VmDQlYfll-wgtCJdVyataPkYLjGld4ppVR-hZSlcYY0Ekf4qOGGGcMMwW6OM5pOBurO-L8RIK8BD728LBDbhUhK7Qhdc-DGAutbdGuyIkY53TY4jP0ZNOuwQv7tZj9PPzp4vV1_Ls-5fT1fKsNELysaQVb3WNpVhrTXjb4QYY1pjxNaOkrUFq2nBBZQOCUyFkrZnEgOuWciJpR9gxervru4nheoI0qsEmA_kQHsKUFM07UMoIZ5m--Y9ehSn6fLpZyTwV0dB71WsHyvoujFGbualaioZzUTWUZ1UeUP08Ie2Ch87mz3v-9QFvNvZa_YtODqD8tDBYc7Dru72CbEbYjr2eUlKnP8737fuH7fLi1-rbviY7bWJIKUKnNtEOOt4qgtUcL7WLl8rxUnO81DbXvLqb77QeoP1b8SdPGdAdSPmX7yHeX8DDXX8DBFjTag</recordid><startdate>201907</startdate><enddate>201907</enddate><creator>Arrangoiz-Arriola, Patricio</creator><creator>Wollack, E. Alex</creator><creator>Wang, Zhaoyou</creator><creator>Pechal, Marek</creator><creator>Jiang, Wentao</creator><creator>McKenna, Timothy P.</creator><creator>Witmer, Jeremy D.</creator><creator>Van Laer, Raphaël</creator><creator>Safavi-Naeini, Amir H.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>201907</creationdate><title>Resolving the energy levels of a nanomechanical oscillator</title><author>Arrangoiz-Arriola, Patricio ; Wollack, E. Alex ; Wang, Zhaoyou ; Pechal, Marek ; Jiang, Wentao ; McKenna, Timothy P. ; Witmer, Jeremy D. ; Van Laer, Raphaël ; Safavi-Naeini, Amir H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c574t-264da8075baa14df09e30a034b321d8e7a2945279e5425578a370e08d24172f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>639/766/483/1139</topic><topic>639/925/927/1064</topic><topic>639/925/927/359</topic><topic>Acoustics</topic><topic>Circuits</topic><topic>Coherence</topic><topic>Couplings</topic><topic>Eigenvectors</topic><topic>Energy</topic><topic>Energy levels</topic><topic>Energy use</topic><topic>Excitation spectra</topic><topic>Experiments</topic><topic>Humanities and Social Sciences</topic><topic>Information processing</topic><topic>Letter</topic><topic>Mechanical oscillators</topic><topic>Microelectromechanical systems</topic><topic>multidisciplinary</topic><topic>Oscillators (Electronics)</topic><topic>Phonons</topic><topic>Photons</topic><topic>Piezoelectricity</topic><topic>Quantum dots</topic><topic>Quantum nondemolition</topic><topic>Quantum phenomena</topic><topic>Quantum sensors</topic><topic>Qubits (quantum computing)</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Sensitivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arrangoiz-Arriola, Patricio</creatorcontrib><creatorcontrib>Wollack, E. Alex</creatorcontrib><creatorcontrib>Wang, Zhaoyou</creatorcontrib><creatorcontrib>Pechal, Marek</creatorcontrib><creatorcontrib>Jiang, Wentao</creatorcontrib><creatorcontrib>McKenna, Timothy P.</creatorcontrib><creatorcontrib>Witmer, Jeremy D.</creatorcontrib><creatorcontrib>Van Laer, Raphaël</creatorcontrib><creatorcontrib>Safavi-Naeini, Amir H.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arrangoiz-Arriola, Patricio</au><au>Wollack, E. Alex</au><au>Wang, Zhaoyou</au><au>Pechal, Marek</au><au>Jiang, Wentao</au><au>McKenna, Timothy P.</au><au>Witmer, Jeremy D.</au><au>Van Laer, Raphaël</au><au>Safavi-Naeini, Amir H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resolving the energy levels of a nanomechanical oscillator</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2019-07</date><risdate>2019</risdate><volume>571</volume><issue>7766</issue><spage>537</spage><epage>540</epage><pages>537-540</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>The quantum nature of an oscillating mechanical object is anything but apparent. The coherent states that describe the classical motion of a mechanical oscillator do not have a well defined energy, but are quantum superpositions of equally spaced energy eigenstates. Revealing this quantized structure is only possible with an apparatus that measures energy with a precision greater than the energy of a single phonon. One way to achieve this sensitivity is by engineering a strong but nonresonant interaction between the oscillator and an atom. In a system with sufficient quantum coherence, this interaction allows one to distinguish different energy eigenstates using resolvable differences in the atom’s transition frequency. For photons, such dispersive measurements have been performed in cavity 1 , 2 and circuit quantum electrodynamics 3 . Here we report an experiment in which an artificial atom senses the motional energy of a driven nanomechanical oscillator with sufficient sensitivity to resolve the quantization of its energy. To realize this, we build a hybrid platform that integrates nanomechanical piezoelectric resonators with a microwave superconducting qubit on the same chip. We excite phonons with resonant pulses and probe the resulting excitation spectrum of the qubit to observe phonon-number-dependent frequency shifts that are about five times larger than the qubit linewidth. Our result demonstrates a fully integrated platform for quantum acoustics that combines large couplings, considerable coherence times and excellent control over the mechanical mode structure. With modest experimental improvements, we expect that our approach will enable quantum nondemolition measurements of phonons 4 and will lead to quantum sensors and information-processing approaches 5 that use chip-scale nanomechanical devices. A hybrid platform comprising a microwave superconducting qubit and a nanomechanical piezoelectric oscillator is used to resolve the phonon number states of the oscillator.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31341303</pmid><doi>10.1038/s41586-019-1386-x</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2019-07, Vol.571 (7766), p.537-540
issn 0028-0836
1476-4687
language eng
recordid cdi_proquest_miscellaneous_2264223143
source SpringerLink Journals; Nature Journals Online
subjects 639/766/483/1139
639/925/927/1064
639/925/927/359
Acoustics
Circuits
Coherence
Couplings
Eigenvectors
Energy
Energy levels
Energy use
Excitation spectra
Experiments
Humanities and Social Sciences
Information processing
Letter
Mechanical oscillators
Microelectromechanical systems
multidisciplinary
Oscillators (Electronics)
Phonons
Photons
Piezoelectricity
Quantum dots
Quantum nondemolition
Quantum phenomena
Quantum sensors
Qubits (quantum computing)
Science
Science (multidisciplinary)
Sensitivity
title Resolving the energy levels of a nanomechanical oscillator
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T15%3A07%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resolving%20the%20energy%20levels%20of%20a%20nanomechanical%20oscillator&rft.jtitle=Nature%20(London)&rft.au=Arrangoiz-Arriola,%20Patricio&rft.date=2019-07&rft.volume=571&rft.issue=7766&rft.spage=537&rft.epage=540&rft.pages=537-540&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-019-1386-x&rft_dat=%3Cgale_proqu%3EA594456924%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2267687592&rft_id=info:pmid/31341303&rft_galeid=A594456924&rfr_iscdi=true