SnS2/SnS p–n heterojunctions with an accumulation layer for ultrasensitive room-temperature NO2 detection

The unique features of SnS2 make it a sensitive material ideal for preparing high-performance nitrogen dioxide (NO2) gas sensors. However, sensors based on pristine tin disulfide (SnS2) fail to work at room temperature (RT) owing to their poor intrinsic conductivity and weak adsorptivity toward the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2019-08, Vol.11 (29), p.13741-13749
Hauptverfasser: Sun, Quan, Wang, Jiaxin, Juanyuan Hao, Zheng, Shengliang, Peng, Wan, Wang, Tingting, Fang, Haitao, Wang, You
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13749
container_issue 29
container_start_page 13741
container_title Nanoscale
container_volume 11
creator Sun, Quan
Wang, Jiaxin
Juanyuan Hao
Zheng, Shengliang
Peng, Wan
Wang, Tingting
Fang, Haitao
Wang, You
description The unique features of SnS2 make it a sensitive material ideal for preparing high-performance nitrogen dioxide (NO2) gas sensors. However, sensors based on pristine tin disulfide (SnS2) fail to work at room temperature (RT) owing to their poor intrinsic conductivity and weak adsorptivity toward the target gas, thereby impeding their wide application. Herein, an ultrasensitive and fully recoverable room-temperature NO2 gas sensor based on SnS2/SnS p–n heterojunctions with an accumulation layer was fabricated. The amounts of SnS2/SnS heterojunctions can be effectively controlled by tuning the ratios of tin and sulfur precursors in the easy one-step solvothermal synthesis. Compared with pristine SnS2, the conductivity of SnS2/SnS heterostructures improved considerably. Such improvement was caused by the electron transfer from p-type SnS to n-type SnS2 because the Fermi level of SnS was higher than that of SnS2. The sensing response of optimized SnS2/SnS toward 4 ppm NO2 was 660% at room temperature, which was higher than most reported sensitivity values of other two-dimensional (2D) materials at room temperature. The superior sensing response of SnS2/SnS heterostructures was attributed to the enhanced electron transport and the increased adsorption sites caused by the SnS2/SnS p–n heterojunctions. Moreover, the SnS2/SnS sensor showed good selectivity and long-term stability. These achievements of SnS2/SnS heterostructured sensors make them highly desirable for practical applications.
doi_str_mv 10.1039/c9nr02780g
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_2264208505</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2263181778</sourcerecordid><originalsourceid>FETCH-LOGICAL-p216t-443f17f24ad9e2421cab25c0e9277207ac10b5dac88a3ac16eeb18e091a1aab3</originalsourceid><addsrcrecordid>eNpdjrtOw0AQRVcIJEKg4QtWoqEx2YfttUsUQUCKSJH00XgzJg72rtkHiI5_4A_5EhxAFDRz74yOjoaQc86uOJPlRJfGMaEK9nhARoKlLJFSicO_nqfH5MT7HWN5KXM5Ik9LsxSTYdD-8_3D0C0GdHYXjQ6NNZ6-NmFLwVDQOnaxhf2VtvCGjtbW0dgGBx6Nb0LzgtRZ2yUBux4dhOiQPiwE3QzKb9spOaqh9Xj2m2Oyur1ZTe-S-WJ2P72eJ73geUjSVNZc1SKFTYkiFVxDJTLNsBRKCaZAc1ZlG9BFAXJYcsSKF8hKDhygkmNy-aPtnX2O6MO6a7zGtgWDNvq1EHkqWJGxbEAv_qE7G50ZnttTkhdcqUJ-ARajae0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2263181778</pqid></control><display><type>article</type><title>SnS2/SnS p–n heterojunctions with an accumulation layer for ultrasensitive room-temperature NO2 detection</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Sun, Quan ; Wang, Jiaxin ; Juanyuan Hao ; Zheng, Shengliang ; Peng, Wan ; Wang, Tingting ; Fang, Haitao ; Wang, You</creator><creatorcontrib>Sun, Quan ; Wang, Jiaxin ; Juanyuan Hao ; Zheng, Shengliang ; Peng, Wan ; Wang, Tingting ; Fang, Haitao ; Wang, You</creatorcontrib><description>The unique features of SnS2 make it a sensitive material ideal for preparing high-performance nitrogen dioxide (NO2) gas sensors. However, sensors based on pristine tin disulfide (SnS2) fail to work at room temperature (RT) owing to their poor intrinsic conductivity and weak adsorptivity toward the target gas, thereby impeding their wide application. Herein, an ultrasensitive and fully recoverable room-temperature NO2 gas sensor based on SnS2/SnS p–n heterojunctions with an accumulation layer was fabricated. The amounts of SnS2/SnS heterojunctions can be effectively controlled by tuning the ratios of tin and sulfur precursors in the easy one-step solvothermal synthesis. Compared with pristine SnS2, the conductivity of SnS2/SnS heterostructures improved considerably. Such improvement was caused by the electron transfer from p-type SnS to n-type SnS2 because the Fermi level of SnS was higher than that of SnS2. The sensing response of optimized SnS2/SnS toward 4 ppm NO2 was 660% at room temperature, which was higher than most reported sensitivity values of other two-dimensional (2D) materials at room temperature. The superior sensing response of SnS2/SnS heterostructures was attributed to the enhanced electron transport and the increased adsorption sites caused by the SnS2/SnS p–n heterojunctions. Moreover, the SnS2/SnS sensor showed good selectivity and long-term stability. These achievements of SnS2/SnS heterostructured sensors make them highly desirable for practical applications.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/c9nr02780g</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Accumulation ; Adsorptivity ; Electron transfer ; Electron transport ; Gas sensors ; Heterojunctions ; Heterostructures ; Nitrogen dioxide ; P-n junctions ; Room temperature ; Selectivity ; Sensors ; Tin disulfide ; Two dimensional materials</subject><ispartof>Nanoscale, 2019-08, Vol.11 (29), p.13741-13749</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Sun, Quan</creatorcontrib><creatorcontrib>Wang, Jiaxin</creatorcontrib><creatorcontrib>Juanyuan Hao</creatorcontrib><creatorcontrib>Zheng, Shengliang</creatorcontrib><creatorcontrib>Peng, Wan</creatorcontrib><creatorcontrib>Wang, Tingting</creatorcontrib><creatorcontrib>Fang, Haitao</creatorcontrib><creatorcontrib>Wang, You</creatorcontrib><title>SnS2/SnS p–n heterojunctions with an accumulation layer for ultrasensitive room-temperature NO2 detection</title><title>Nanoscale</title><description>The unique features of SnS2 make it a sensitive material ideal for preparing high-performance nitrogen dioxide (NO2) gas sensors. However, sensors based on pristine tin disulfide (SnS2) fail to work at room temperature (RT) owing to their poor intrinsic conductivity and weak adsorptivity toward the target gas, thereby impeding their wide application. Herein, an ultrasensitive and fully recoverable room-temperature NO2 gas sensor based on SnS2/SnS p–n heterojunctions with an accumulation layer was fabricated. The amounts of SnS2/SnS heterojunctions can be effectively controlled by tuning the ratios of tin and sulfur precursors in the easy one-step solvothermal synthesis. Compared with pristine SnS2, the conductivity of SnS2/SnS heterostructures improved considerably. Such improvement was caused by the electron transfer from p-type SnS to n-type SnS2 because the Fermi level of SnS was higher than that of SnS2. The sensing response of optimized SnS2/SnS toward 4 ppm NO2 was 660% at room temperature, which was higher than most reported sensitivity values of other two-dimensional (2D) materials at room temperature. The superior sensing response of SnS2/SnS heterostructures was attributed to the enhanced electron transport and the increased adsorption sites caused by the SnS2/SnS p–n heterojunctions. Moreover, the SnS2/SnS sensor showed good selectivity and long-term stability. These achievements of SnS2/SnS heterostructured sensors make them highly desirable for practical applications.</description><subject>Accumulation</subject><subject>Adsorptivity</subject><subject>Electron transfer</subject><subject>Electron transport</subject><subject>Gas sensors</subject><subject>Heterojunctions</subject><subject>Heterostructures</subject><subject>Nitrogen dioxide</subject><subject>P-n junctions</subject><subject>Room temperature</subject><subject>Selectivity</subject><subject>Sensors</subject><subject>Tin disulfide</subject><subject>Two dimensional materials</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdjrtOw0AQRVcIJEKg4QtWoqEx2YfttUsUQUCKSJH00XgzJg72rtkHiI5_4A_5EhxAFDRz74yOjoaQc86uOJPlRJfGMaEK9nhARoKlLJFSicO_nqfH5MT7HWN5KXM5Ik9LsxSTYdD-8_3D0C0GdHYXjQ6NNZ6-NmFLwVDQOnaxhf2VtvCGjtbW0dgGBx6Nb0LzgtRZ2yUBux4dhOiQPiwE3QzKb9spOaqh9Xj2m2Oyur1ZTe-S-WJ2P72eJ73geUjSVNZc1SKFTYkiFVxDJTLNsBRKCaZAc1ZlG9BFAXJYcsSKF8hKDhygkmNy-aPtnX2O6MO6a7zGtgWDNvq1EHkqWJGxbEAv_qE7G50ZnttTkhdcqUJ-ARajae0</recordid><startdate>20190807</startdate><enddate>20190807</enddate><creator>Sun, Quan</creator><creator>Wang, Jiaxin</creator><creator>Juanyuan Hao</creator><creator>Zheng, Shengliang</creator><creator>Peng, Wan</creator><creator>Wang, Tingting</creator><creator>Fang, Haitao</creator><creator>Wang, You</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20190807</creationdate><title>SnS2/SnS p–n heterojunctions with an accumulation layer for ultrasensitive room-temperature NO2 detection</title><author>Sun, Quan ; Wang, Jiaxin ; Juanyuan Hao ; Zheng, Shengliang ; Peng, Wan ; Wang, Tingting ; Fang, Haitao ; Wang, You</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p216t-443f17f24ad9e2421cab25c0e9277207ac10b5dac88a3ac16eeb18e091a1aab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Accumulation</topic><topic>Adsorptivity</topic><topic>Electron transfer</topic><topic>Electron transport</topic><topic>Gas sensors</topic><topic>Heterojunctions</topic><topic>Heterostructures</topic><topic>Nitrogen dioxide</topic><topic>P-n junctions</topic><topic>Room temperature</topic><topic>Selectivity</topic><topic>Sensors</topic><topic>Tin disulfide</topic><topic>Two dimensional materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Quan</creatorcontrib><creatorcontrib>Wang, Jiaxin</creatorcontrib><creatorcontrib>Juanyuan Hao</creatorcontrib><creatorcontrib>Zheng, Shengliang</creatorcontrib><creatorcontrib>Peng, Wan</creatorcontrib><creatorcontrib>Wang, Tingting</creatorcontrib><creatorcontrib>Fang, Haitao</creatorcontrib><creatorcontrib>Wang, You</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Quan</au><au>Wang, Jiaxin</au><au>Juanyuan Hao</au><au>Zheng, Shengliang</au><au>Peng, Wan</au><au>Wang, Tingting</au><au>Fang, Haitao</au><au>Wang, You</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SnS2/SnS p–n heterojunctions with an accumulation layer for ultrasensitive room-temperature NO2 detection</atitle><jtitle>Nanoscale</jtitle><date>2019-08-07</date><risdate>2019</risdate><volume>11</volume><issue>29</issue><spage>13741</spage><epage>13749</epage><pages>13741-13749</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>The unique features of SnS2 make it a sensitive material ideal for preparing high-performance nitrogen dioxide (NO2) gas sensors. However, sensors based on pristine tin disulfide (SnS2) fail to work at room temperature (RT) owing to their poor intrinsic conductivity and weak adsorptivity toward the target gas, thereby impeding their wide application. Herein, an ultrasensitive and fully recoverable room-temperature NO2 gas sensor based on SnS2/SnS p–n heterojunctions with an accumulation layer was fabricated. The amounts of SnS2/SnS heterojunctions can be effectively controlled by tuning the ratios of tin and sulfur precursors in the easy one-step solvothermal synthesis. Compared with pristine SnS2, the conductivity of SnS2/SnS heterostructures improved considerably. Such improvement was caused by the electron transfer from p-type SnS to n-type SnS2 because the Fermi level of SnS was higher than that of SnS2. The sensing response of optimized SnS2/SnS toward 4 ppm NO2 was 660% at room temperature, which was higher than most reported sensitivity values of other two-dimensional (2D) materials at room temperature. The superior sensing response of SnS2/SnS heterostructures was attributed to the enhanced electron transport and the increased adsorption sites caused by the SnS2/SnS p–n heterojunctions. Moreover, the SnS2/SnS sensor showed good selectivity and long-term stability. These achievements of SnS2/SnS heterostructured sensors make them highly desirable for practical applications.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c9nr02780g</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof Nanoscale, 2019-08, Vol.11 (29), p.13741-13749
issn 2040-3364
2040-3372
language eng
recordid cdi_proquest_miscellaneous_2264208505
source Royal Society Of Chemistry Journals 2008-
subjects Accumulation
Adsorptivity
Electron transfer
Electron transport
Gas sensors
Heterojunctions
Heterostructures
Nitrogen dioxide
P-n junctions
Room temperature
Selectivity
Sensors
Tin disulfide
Two dimensional materials
title SnS2/SnS p–n heterojunctions with an accumulation layer for ultrasensitive room-temperature NO2 detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T11%3A06%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SnS2/SnS%20p%E2%80%93n%20heterojunctions%20with%20an%20accumulation%20layer%20for%20ultrasensitive%20room-temperature%20NO2%20detection&rft.jtitle=Nanoscale&rft.au=Sun,%20Quan&rft.date=2019-08-07&rft.volume=11&rft.issue=29&rft.spage=13741&rft.epage=13749&rft.pages=13741-13749&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/c9nr02780g&rft_dat=%3Cproquest%3E2263181778%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2263181778&rft_id=info:pmid/&rfr_iscdi=true