A numerical simulation of Kelvin-Helmholtz waves of finite amplitude

A number of initial- and boundary-value problems for the Boussinesq equations are solved by a finite-difference technique, in an attempt to see how a stably-stratified horizontal shear layer rolls up into horizontally periodic billows of concentrated vorticity, such as are frequently observed in the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 1976-01, Vol.73 (2), p.215-240
Hauptverfasser: Patnaik, P. C., Sherman, F. S., Corcos, G. M.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 240
container_issue 2
container_start_page 215
container_title Journal of fluid mechanics
container_volume 73
creator Patnaik, P. C.
Sherman, F. S.
Corcos, G. M.
description A number of initial- and boundary-value problems for the Boussinesq equations are solved by a finite-difference technique, in an attempt to see how a stably-stratified horizontal shear layer rolls up into horizontally periodic billows of concentrated vorticity, such as are frequently observed in the atmosphere and oceans. This paper describes the methods, results and accuracy of the numerical simulations. The results are further analysed and approximately reproduced by a simple semi-analytic model in Corcos & Sherman (1976).
doi_str_mv 10.1017/S0022112076001353
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_22635362</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0022112076001353</cupid><sourcerecordid>22635362</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-117fd33eb87e2675ddb7493dbc905a3b168ccb5a792eccbcf2706322d7f1de193</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EEqXwA7jlxC3gR2I3x6qlLaKAUOFsOfYGXJyk2El5_HoSteKCxGlXmm92tIPQOcGXBBNxtcKYUkIoFhxjwlJ2gAYk4VkseJIeokEvx71-jE5CWPcMzsQATcdR1ZbgrVYuCrZsnWpsXUV1Ed2C29oqXoArX2vXfEcfaguhVwpb2QYiVW6cbVoDp-ioUC7A2X4O0fPs-mmyiJcP85vJeBnrhNKmixeFYQzykQDKRWpMLpKMmVxnOFUsJ3ykdZ4qkVHoFl1QgTmj1IiCGCAZG6KL3d2Nr99bCI0sbdDgnKqgboOklHefc9qBZAdqX4fgoZAbb0vlvyTBsu9L_umr88Q7jw0NfP4alH-TXDCRSj5_lNPVbH4_T6byruPZPkOVubfmBeS6bn3VFfBPyg_eenu5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>22635362</pqid></control><display><type>article</type><title>A numerical simulation of Kelvin-Helmholtz waves of finite amplitude</title><source>Cambridge University Press Journals Complete</source><creator>Patnaik, P. C. ; Sherman, F. S. ; Corcos, G. M.</creator><creatorcontrib>Patnaik, P. C. ; Sherman, F. S. ; Corcos, G. M.</creatorcontrib><description>A number of initial- and boundary-value problems for the Boussinesq equations are solved by a finite-difference technique, in an attempt to see how a stably-stratified horizontal shear layer rolls up into horizontally periodic billows of concentrated vorticity, such as are frequently observed in the atmosphere and oceans. This paper describes the methods, results and accuracy of the numerical simulations. The results are further analysed and approximately reproduced by a simple semi-analytic model in Corcos &amp; Sherman (1976).</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/S0022112076001353</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><ispartof>Journal of fluid mechanics, 1976-01, Vol.73 (2), p.215-240</ispartof><rights>1976 Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-117fd33eb87e2675ddb7493dbc905a3b168ccb5a792eccbcf2706322d7f1de193</citedby><cites>FETCH-LOGICAL-c422t-117fd33eb87e2675ddb7493dbc905a3b168ccb5a792eccbcf2706322d7f1de193</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112076001353/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids></links><search><creatorcontrib>Patnaik, P. C.</creatorcontrib><creatorcontrib>Sherman, F. S.</creatorcontrib><creatorcontrib>Corcos, G. M.</creatorcontrib><title>A numerical simulation of Kelvin-Helmholtz waves of finite amplitude</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>A number of initial- and boundary-value problems for the Boussinesq equations are solved by a finite-difference technique, in an attempt to see how a stably-stratified horizontal shear layer rolls up into horizontally periodic billows of concentrated vorticity, such as are frequently observed in the atmosphere and oceans. This paper describes the methods, results and accuracy of the numerical simulations. The results are further analysed and approximately reproduced by a simple semi-analytic model in Corcos &amp; Sherman (1976).</description><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1976</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPwzAQhC0EEqXwA7jlxC3gR2I3x6qlLaKAUOFsOfYGXJyk2El5_HoSteKCxGlXmm92tIPQOcGXBBNxtcKYUkIoFhxjwlJ2gAYk4VkseJIeokEvx71-jE5CWPcMzsQATcdR1ZbgrVYuCrZsnWpsXUV1Ed2C29oqXoArX2vXfEcfaguhVwpb2QYiVW6cbVoDp-ioUC7A2X4O0fPs-mmyiJcP85vJeBnrhNKmixeFYQzykQDKRWpMLpKMmVxnOFUsJ3ykdZ4qkVHoFl1QgTmj1IiCGCAZG6KL3d2Nr99bCI0sbdDgnKqgboOklHefc9qBZAdqX4fgoZAbb0vlvyTBsu9L_umr88Q7jw0NfP4alH-TXDCRSj5_lNPVbH4_T6byruPZPkOVubfmBeS6bn3VFfBPyg_eenu5</recordid><startdate>19760127</startdate><enddate>19760127</enddate><creator>Patnaik, P. C.</creator><creator>Sherman, F. S.</creator><creator>Corcos, G. M.</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>19760127</creationdate><title>A numerical simulation of Kelvin-Helmholtz waves of finite amplitude</title><author>Patnaik, P. C. ; Sherman, F. S. ; Corcos, G. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-117fd33eb87e2675ddb7493dbc905a3b168ccb5a792eccbcf2706322d7f1de193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1976</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Patnaik, P. C.</creatorcontrib><creatorcontrib>Sherman, F. S.</creatorcontrib><creatorcontrib>Corcos, G. M.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Patnaik, P. C.</au><au>Sherman, F. S.</au><au>Corcos, G. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A numerical simulation of Kelvin-Helmholtz waves of finite amplitude</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>1976-01-27</date><risdate>1976</risdate><volume>73</volume><issue>2</issue><spage>215</spage><epage>240</epage><pages>215-240</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>A number of initial- and boundary-value problems for the Boussinesq equations are solved by a finite-difference technique, in an attempt to see how a stably-stratified horizontal shear layer rolls up into horizontally periodic billows of concentrated vorticity, such as are frequently observed in the atmosphere and oceans. This paper describes the methods, results and accuracy of the numerical simulations. The results are further analysed and approximately reproduced by a simple semi-analytic model in Corcos &amp; Sherman (1976).</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0022112076001353</doi><tpages>26</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 1976-01, Vol.73 (2), p.215-240
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_miscellaneous_22635362
source Cambridge University Press Journals Complete
title A numerical simulation of Kelvin-Helmholtz waves of finite amplitude
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T11%3A06%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20numerical%20simulation%20of%20Kelvin-Helmholtz%20waves%20of%20finite%20amplitude&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Patnaik,%20P.%20C.&rft.date=1976-01-27&rft.volume=73&rft.issue=2&rft.spage=215&rft.epage=240&rft.pages=215-240&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/S0022112076001353&rft_dat=%3Cproquest_cross%3E22635362%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=22635362&rft_id=info:pmid/&rft_cupid=10_1017_S0022112076001353&rfr_iscdi=true