Biophysical characterization Of Alpers encephalopathy associated mutants of human mitochondrial phenylalanyl‐tRNA synthetase

Mutations in nucleus‐encoded mitochondrial aminoacyl‐tRNA synthetases (mitaaRSs) lead to defects in mitochondrial translation affecting the expression and function of 13 subunits of the respiratory chain complex leading to diverse pathological conditions. Mutations in the FARS2 gene encoding human m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IUBMB life 2019-08, Vol.71 (8), p.1141-1149
Hauptverfasser: Chakraborty, Shruti, Ibba, Michael, Banerjee, Rajat
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1149
container_issue 8
container_start_page 1141
container_title IUBMB life
container_volume 71
creator Chakraborty, Shruti
Ibba, Michael
Banerjee, Rajat
description Mutations in nucleus‐encoded mitochondrial aminoacyl‐tRNA synthetases (mitaaRSs) lead to defects in mitochondrial translation affecting the expression and function of 13 subunits of the respiratory chain complex leading to diverse pathological conditions. Mutations in the FARS2 gene encoding human mitochondrial phenylalanyl‐tRNA synthetase (HsmitPheRS) have been found to be associated with two different clinical representations, infantile Alpers encephalopathy and spastic paraplegia. Here we have studied three pathogenic mutants (Tyr144Cys, Ile329Thr, and Asp391Val) associated with Alpers encephalopathy to understand how these variants affect the biophysical properties of the enzyme. These mutants have already been reported to have reduced aminoacylation activity. Our study established that the mutants are significantly more thermolabile compared to the wild‐type enzyme with reduced solubility in vitro. The presence of aggregation‐prone insoluble HsmitPheRS variants could have a detrimental impact on organellar translation, and potentially impact normal mitochondrial function. © 2019 IUBMB Life, 71(8): 1141–1149, 2019 © 2019 IUBMB Life, 71(8):1141–1149, 2019
doi_str_mv 10.1002/iub.2114
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2261260233</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2261260233</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3834-4a83a8e0dc44eab722bd941cc3274cb0254888c77bdd710d1135c5e9f9bc271a3</originalsourceid><addsrcrecordid>eNp1kc1K3kAUhodSqdYWvAIZ6MZNdP7yZbL8_LBVEAXRdTiZnJCRJJPOTJC4EC-h19gr6fhTCwXP4pyzeHh44SVkj7NDzpg4snN9KDhXH8gOzwXPVnnOP779Sm6TzyHcsjQFKz-RbcmF4noldsjDsXVTtwRroKemAw8morf3EK0b6WVL1_2EPlAcDU4d9G6C2C0UQnDGQsSGDnOEMQbqWtrNA4x0sNGZzo2Nt8k5dTguPfSQ9u_HX_HqYk3DMsYOIwT8QrZa6AN-fb275Ob7yfXmNDu__HG2WZ9nRmqpMgVagkbWGKUQ6kKIuikVN0aKQpmaiVxprU1R1E1TcNZwLnOTY9mWtREFB7lLDl68k3c_ZwyxGmww2KdY6OZQCbHiYsWElAn99h9662Y_pnSJystSaKnLf0LjXQge22rydgC_VJxVT51UqZPqqZOE7r8K53rA5g38W0ICshfgzva4vCuqzm6On4V_ABqdmHg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259928389</pqid></control><display><type>article</type><title>Biophysical characterization Of Alpers encephalopathy associated mutants of human mitochondrial phenylalanyl‐tRNA synthetase</title><source>MEDLINE</source><source>Wiley Online Library</source><source>Wiley Online Library (Open Access Collection)</source><creator>Chakraborty, Shruti ; Ibba, Michael ; Banerjee, Rajat</creator><creatorcontrib>Chakraborty, Shruti ; Ibba, Michael ; Banerjee, Rajat</creatorcontrib><description>Mutations in nucleus‐encoded mitochondrial aminoacyl‐tRNA synthetases (mitaaRSs) lead to defects in mitochondrial translation affecting the expression and function of 13 subunits of the respiratory chain complex leading to diverse pathological conditions. Mutations in the FARS2 gene encoding human mitochondrial phenylalanyl‐tRNA synthetase (HsmitPheRS) have been found to be associated with two different clinical representations, infantile Alpers encephalopathy and spastic paraplegia. Here we have studied three pathogenic mutants (Tyr144Cys, Ile329Thr, and Asp391Val) associated with Alpers encephalopathy to understand how these variants affect the biophysical properties of the enzyme. These mutants have already been reported to have reduced aminoacylation activity. Our study established that the mutants are significantly more thermolabile compared to the wild‐type enzyme with reduced solubility in vitro. The presence of aggregation‐prone insoluble HsmitPheRS variants could have a detrimental impact on organellar translation, and potentially impact normal mitochondrial function. © 2019 IUBMB Life, 71(8): 1141–1149, 2019 © 2019 IUBMB Life, 71(8):1141–1149, 2019</description><identifier>ISSN: 1521-6543</identifier><identifier>EISSN: 1521-6551</identifier><identifier>DOI: 10.1002/iub.2114</identifier><identifier>PMID: 31241862</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Adenosine Triphosphate - chemistry ; Aminoacylation ; Diffuse Cerebral Sclerosis of Schilder - enzymology ; Diffuse Cerebral Sclerosis of Schilder - genetics ; Electron transport ; Encephalopathy ; Enzymes ; Escherichia coli - metabolism ; Genome, Bacterial ; HsmitPheRS ; Humans ; Hydrogen-Ion Concentration ; infantile Alpers encephalopathy ; Ligands ; Light ; mitaaRSs ; Mitochondria ; Mitochondria - enzymology ; Mitochondrial Proteins - genetics ; Mitochondrial Proteins - physiology ; Mutation ; Paraplegia - enzymology ; Paraplegia - genetics ; Particle Size ; Phenylalanine - chemistry ; Phenylalanine-tRNA Ligase - genetics ; Phenylalanine-tRNA Ligase - physiology ; Plasmids - metabolism ; Protein Biosynthesis ; Solubility ; Spastic paraplegia ; Temperature ; Translation ; tRNA</subject><ispartof>IUBMB life, 2019-08, Vol.71 (8), p.1141-1149</ispartof><rights>2019 International Union of Biochemistry and Molecular Biology</rights><rights>2019 International Union of Biochemistry and Molecular Biology.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3834-4a83a8e0dc44eab722bd941cc3274cb0254888c77bdd710d1135c5e9f9bc271a3</citedby><cites>FETCH-LOGICAL-c3834-4a83a8e0dc44eab722bd941cc3274cb0254888c77bdd710d1135c5e9f9bc271a3</cites><orcidid>0000-0002-1451-7524 ; 0000-0003-2970-4901 ; 0000-0002-5318-1605</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fiub.2114$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fiub.2114$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,1434,27926,27927,45576,45577,46411,46835</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31241862$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chakraborty, Shruti</creatorcontrib><creatorcontrib>Ibba, Michael</creatorcontrib><creatorcontrib>Banerjee, Rajat</creatorcontrib><title>Biophysical characterization Of Alpers encephalopathy associated mutants of human mitochondrial phenylalanyl‐tRNA synthetase</title><title>IUBMB life</title><addtitle>IUBMB Life</addtitle><description>Mutations in nucleus‐encoded mitochondrial aminoacyl‐tRNA synthetases (mitaaRSs) lead to defects in mitochondrial translation affecting the expression and function of 13 subunits of the respiratory chain complex leading to diverse pathological conditions. Mutations in the FARS2 gene encoding human mitochondrial phenylalanyl‐tRNA synthetase (HsmitPheRS) have been found to be associated with two different clinical representations, infantile Alpers encephalopathy and spastic paraplegia. Here we have studied three pathogenic mutants (Tyr144Cys, Ile329Thr, and Asp391Val) associated with Alpers encephalopathy to understand how these variants affect the biophysical properties of the enzyme. These mutants have already been reported to have reduced aminoacylation activity. Our study established that the mutants are significantly more thermolabile compared to the wild‐type enzyme with reduced solubility in vitro. The presence of aggregation‐prone insoluble HsmitPheRS variants could have a detrimental impact on organellar translation, and potentially impact normal mitochondrial function. © 2019 IUBMB Life, 71(8): 1141–1149, 2019 © 2019 IUBMB Life, 71(8):1141–1149, 2019</description><subject>Adenosine Triphosphate - chemistry</subject><subject>Aminoacylation</subject><subject>Diffuse Cerebral Sclerosis of Schilder - enzymology</subject><subject>Diffuse Cerebral Sclerosis of Schilder - genetics</subject><subject>Electron transport</subject><subject>Encephalopathy</subject><subject>Enzymes</subject><subject>Escherichia coli - metabolism</subject><subject>Genome, Bacterial</subject><subject>HsmitPheRS</subject><subject>Humans</subject><subject>Hydrogen-Ion Concentration</subject><subject>infantile Alpers encephalopathy</subject><subject>Ligands</subject><subject>Light</subject><subject>mitaaRSs</subject><subject>Mitochondria</subject><subject>Mitochondria - enzymology</subject><subject>Mitochondrial Proteins - genetics</subject><subject>Mitochondrial Proteins - physiology</subject><subject>Mutation</subject><subject>Paraplegia - enzymology</subject><subject>Paraplegia - genetics</subject><subject>Particle Size</subject><subject>Phenylalanine - chemistry</subject><subject>Phenylalanine-tRNA Ligase - genetics</subject><subject>Phenylalanine-tRNA Ligase - physiology</subject><subject>Plasmids - metabolism</subject><subject>Protein Biosynthesis</subject><subject>Solubility</subject><subject>Spastic paraplegia</subject><subject>Temperature</subject><subject>Translation</subject><subject>tRNA</subject><issn>1521-6543</issn><issn>1521-6551</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc1K3kAUhodSqdYWvAIZ6MZNdP7yZbL8_LBVEAXRdTiZnJCRJJPOTJC4EC-h19gr6fhTCwXP4pyzeHh44SVkj7NDzpg4snN9KDhXH8gOzwXPVnnOP779Sm6TzyHcsjQFKz-RbcmF4noldsjDsXVTtwRroKemAw8morf3EK0b6WVL1_2EPlAcDU4d9G6C2C0UQnDGQsSGDnOEMQbqWtrNA4x0sNGZzo2Nt8k5dTguPfSQ9u_HX_HqYk3DMsYOIwT8QrZa6AN-fb275Ob7yfXmNDu__HG2WZ9nRmqpMgVagkbWGKUQ6kKIuikVN0aKQpmaiVxprU1R1E1TcNZwLnOTY9mWtREFB7lLDl68k3c_ZwyxGmww2KdY6OZQCbHiYsWElAn99h9662Y_pnSJystSaKnLf0LjXQge22rydgC_VJxVT51UqZPqqZOE7r8K53rA5g38W0ICshfgzva4vCuqzm6On4V_ABqdmHg</recordid><startdate>201908</startdate><enddate>201908</enddate><creator>Chakraborty, Shruti</creator><creator>Ibba, Michael</creator><creator>Banerjee, Rajat</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1451-7524</orcidid><orcidid>https://orcid.org/0000-0003-2970-4901</orcidid><orcidid>https://orcid.org/0000-0002-5318-1605</orcidid></search><sort><creationdate>201908</creationdate><title>Biophysical characterization Of Alpers encephalopathy associated mutants of human mitochondrial phenylalanyl‐tRNA synthetase</title><author>Chakraborty, Shruti ; Ibba, Michael ; Banerjee, Rajat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3834-4a83a8e0dc44eab722bd941cc3274cb0254888c77bdd710d1135c5e9f9bc271a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adenosine Triphosphate - chemistry</topic><topic>Aminoacylation</topic><topic>Diffuse Cerebral Sclerosis of Schilder - enzymology</topic><topic>Diffuse Cerebral Sclerosis of Schilder - genetics</topic><topic>Electron transport</topic><topic>Encephalopathy</topic><topic>Enzymes</topic><topic>Escherichia coli - metabolism</topic><topic>Genome, Bacterial</topic><topic>HsmitPheRS</topic><topic>Humans</topic><topic>Hydrogen-Ion Concentration</topic><topic>infantile Alpers encephalopathy</topic><topic>Ligands</topic><topic>Light</topic><topic>mitaaRSs</topic><topic>Mitochondria</topic><topic>Mitochondria - enzymology</topic><topic>Mitochondrial Proteins - genetics</topic><topic>Mitochondrial Proteins - physiology</topic><topic>Mutation</topic><topic>Paraplegia - enzymology</topic><topic>Paraplegia - genetics</topic><topic>Particle Size</topic><topic>Phenylalanine - chemistry</topic><topic>Phenylalanine-tRNA Ligase - genetics</topic><topic>Phenylalanine-tRNA Ligase - physiology</topic><topic>Plasmids - metabolism</topic><topic>Protein Biosynthesis</topic><topic>Solubility</topic><topic>Spastic paraplegia</topic><topic>Temperature</topic><topic>Translation</topic><topic>tRNA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chakraborty, Shruti</creatorcontrib><creatorcontrib>Ibba, Michael</creatorcontrib><creatorcontrib>Banerjee, Rajat</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IUBMB life</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chakraborty, Shruti</au><au>Ibba, Michael</au><au>Banerjee, Rajat</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biophysical characterization Of Alpers encephalopathy associated mutants of human mitochondrial phenylalanyl‐tRNA synthetase</atitle><jtitle>IUBMB life</jtitle><addtitle>IUBMB Life</addtitle><date>2019-08</date><risdate>2019</risdate><volume>71</volume><issue>8</issue><spage>1141</spage><epage>1149</epage><pages>1141-1149</pages><issn>1521-6543</issn><eissn>1521-6551</eissn><abstract>Mutations in nucleus‐encoded mitochondrial aminoacyl‐tRNA synthetases (mitaaRSs) lead to defects in mitochondrial translation affecting the expression and function of 13 subunits of the respiratory chain complex leading to diverse pathological conditions. Mutations in the FARS2 gene encoding human mitochondrial phenylalanyl‐tRNA synthetase (HsmitPheRS) have been found to be associated with two different clinical representations, infantile Alpers encephalopathy and spastic paraplegia. Here we have studied three pathogenic mutants (Tyr144Cys, Ile329Thr, and Asp391Val) associated with Alpers encephalopathy to understand how these variants affect the biophysical properties of the enzyme. These mutants have already been reported to have reduced aminoacylation activity. Our study established that the mutants are significantly more thermolabile compared to the wild‐type enzyme with reduced solubility in vitro. The presence of aggregation‐prone insoluble HsmitPheRS variants could have a detrimental impact on organellar translation, and potentially impact normal mitochondrial function. © 2019 IUBMB Life, 71(8): 1141–1149, 2019 © 2019 IUBMB Life, 71(8):1141–1149, 2019</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>31241862</pmid><doi>10.1002/iub.2114</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1451-7524</orcidid><orcidid>https://orcid.org/0000-0003-2970-4901</orcidid><orcidid>https://orcid.org/0000-0002-5318-1605</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1521-6543
ispartof IUBMB life, 2019-08, Vol.71 (8), p.1141-1149
issn 1521-6543
1521-6551
language eng
recordid cdi_proquest_miscellaneous_2261260233
source MEDLINE; Wiley Online Library; Wiley Online Library (Open Access Collection)
subjects Adenosine Triphosphate - chemistry
Aminoacylation
Diffuse Cerebral Sclerosis of Schilder - enzymology
Diffuse Cerebral Sclerosis of Schilder - genetics
Electron transport
Encephalopathy
Enzymes
Escherichia coli - metabolism
Genome, Bacterial
HsmitPheRS
Humans
Hydrogen-Ion Concentration
infantile Alpers encephalopathy
Ligands
Light
mitaaRSs
Mitochondria
Mitochondria - enzymology
Mitochondrial Proteins - genetics
Mitochondrial Proteins - physiology
Mutation
Paraplegia - enzymology
Paraplegia - genetics
Particle Size
Phenylalanine - chemistry
Phenylalanine-tRNA Ligase - genetics
Phenylalanine-tRNA Ligase - physiology
Plasmids - metabolism
Protein Biosynthesis
Solubility
Spastic paraplegia
Temperature
Translation
tRNA
title Biophysical characterization Of Alpers encephalopathy associated mutants of human mitochondrial phenylalanyl‐tRNA synthetase
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T21%3A57%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biophysical%20characterization%20Of%20Alpers%20encephalopathy%20associated%20mutants%20of%20human%20mitochondrial%20phenylalanyl%E2%80%90tRNA%20synthetase&rft.jtitle=IUBMB%20life&rft.au=Chakraborty,%20Shruti&rft.date=2019-08&rft.volume=71&rft.issue=8&rft.spage=1141&rft.epage=1149&rft.pages=1141-1149&rft.issn=1521-6543&rft.eissn=1521-6551&rft_id=info:doi/10.1002/iub.2114&rft_dat=%3Cproquest_cross%3E2261260233%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259928389&rft_id=info:pmid/31241862&rfr_iscdi=true