Mesenchymal cells and fluid flow stimulation synergistically regulate the kinetics of corneal epithelial cells at the air–liquid interface

Purpose In vivo microenvironments are critical to tissue homeostasis and wound healing, and the cornea is regulated by a specific microenvironment complex that consists of cell–cell interactions, air–liquid interfaces, and fluid flow stimulation. In this study, we aimed to clarify the effects of and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Graefe's archive for clinical and experimental ophthalmology 2019-09, Vol.257 (9), p.1915-1924
Hauptverfasser: Kawata, Kosuke, Aoki, Shigehisa, Futamata, Maki, Yamamoto-Rikitake, Mihoko, Nakao, Isao, Enaida, Hiroshi, Toda, Shuji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1924
container_issue 9
container_start_page 1915
container_title Graefe's archive for clinical and experimental ophthalmology
container_volume 257
creator Kawata, Kosuke
Aoki, Shigehisa
Futamata, Maki
Yamamoto-Rikitake, Mihoko
Nakao, Isao
Enaida, Hiroshi
Toda, Shuji
description Purpose In vivo microenvironments are critical to tissue homeostasis and wound healing, and the cornea is regulated by a specific microenvironment complex that consists of cell–cell interactions, air–liquid interfaces, and fluid flow stimulation. In this study, we aimed to clarify the effects of and the correlations among these three component factors on the cell kinetics of corneal epithelial cells. Methods Human corneal epithelial–transformed (HCE–T) cells were cocultured with either primary rat corneal fibroblasts or NIH 3T3 fibroblasts. We employed a double-dish culture method to create an air–liquid interface and a gyratory shaker to create fluid flow stimulation. Morphometric and protein expression analyses were performed for the HCE–T cells. Results Both the primary rat fibroblasts and the NIH 3T3 cells promoted HCE–T cell proliferation, and the presence of fluid flow synergistically enhanced this effect and inhibited the apoptosis of HCE–T cells. Moreover, fluid flow enhanced the emergence of myofibroblasts when cocultured with primary rat fibroblasts or NIH 3T3 cells. Extracellular signal-regulated kinase and p38 signaling were regulated either synergistically or independently by both fluid flow and cellular interaction between the HCE–T and NIH 3T3 cells. Conclusion The cell–cell interaction and fluid flow stimulation in the air–liquid interface synergistically or independently regulated the behavior of HCE–T cells. Fluid flow accelerated the phenotypic change from corneal fibroblasts and NIH 3T3 cells to myofibroblasts. Elucidation of the multicomponent interplay in this microenvironment will be critical to the homeostasis and regeneration of the cornea and other ocular tissues.
doi_str_mv 10.1007/s00417-019-04422-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2261225948</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2260245564</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-205f819670c0a935afe530d25655ff6df02de5eda6d7542b70b9a9015099e9433</originalsourceid><addsrcrecordid>eNp9kc9u1DAQxi0EotvCC_RQWeLSS2D8L1kfqwooUhEXkHqzvMl469ZxtnYilBsP0BtvyJPgdAuVOHCZkeb7zTcjfYQcM3jLAJp3GUCypgKmK5CS82p-RlZMClU1wK-ekxU0nFVrwa8OyGHON1B4odhLciCY4ExxsSL3nzFjbK_n3gbaYgiZ2thRFya_1OE7zaPvp2BHP0Sa54hp68uotSHMNOF2kZCO10hvfcQiZDo42g4pYnHEnS9S8E_m4wNrffr142fwd8sZH0dMzrb4irxwNmR8_diPyLcP77-eX1SXXz5-Oj-7rFop2VhxUG7NdN1AC1YLZR0qAR1XtVLO1Z0D3qHCztZdoyTfNLDRVgNToDVqKcQROd377tJwN2EeTe_z8p-NOEzZcF4zzpWW64K--Qe9GaYUy3cLBVwqVctC8T3VpiHnhM7sku9tmg0Ds2Rl9lmZkpV5yMrMZenk0Xra9Nj9XfkTTgHEHshFiltMT7f_Y_sbxSqi1w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2260245564</pqid></control><display><type>article</type><title>Mesenchymal cells and fluid flow stimulation synergistically regulate the kinetics of corneal epithelial cells at the air–liquid interface</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Kawata, Kosuke ; Aoki, Shigehisa ; Futamata, Maki ; Yamamoto-Rikitake, Mihoko ; Nakao, Isao ; Enaida, Hiroshi ; Toda, Shuji</creator><creatorcontrib>Kawata, Kosuke ; Aoki, Shigehisa ; Futamata, Maki ; Yamamoto-Rikitake, Mihoko ; Nakao, Isao ; Enaida, Hiroshi ; Toda, Shuji</creatorcontrib><description>Purpose In vivo microenvironments are critical to tissue homeostasis and wound healing, and the cornea is regulated by a specific microenvironment complex that consists of cell–cell interactions, air–liquid interfaces, and fluid flow stimulation. In this study, we aimed to clarify the effects of and the correlations among these three component factors on the cell kinetics of corneal epithelial cells. Methods Human corneal epithelial–transformed (HCE–T) cells were cocultured with either primary rat corneal fibroblasts or NIH 3T3 fibroblasts. We employed a double-dish culture method to create an air–liquid interface and a gyratory shaker to create fluid flow stimulation. Morphometric and protein expression analyses were performed for the HCE–T cells. Results Both the primary rat fibroblasts and the NIH 3T3 cells promoted HCE–T cell proliferation, and the presence of fluid flow synergistically enhanced this effect and inhibited the apoptosis of HCE–T cells. Moreover, fluid flow enhanced the emergence of myofibroblasts when cocultured with primary rat fibroblasts or NIH 3T3 cells. Extracellular signal-regulated kinase and p38 signaling were regulated either synergistically or independently by both fluid flow and cellular interaction between the HCE–T and NIH 3T3 cells. Conclusion The cell–cell interaction and fluid flow stimulation in the air–liquid interface synergistically or independently regulated the behavior of HCE–T cells. Fluid flow accelerated the phenotypic change from corneal fibroblasts and NIH 3T3 cells to myofibroblasts. Elucidation of the multicomponent interplay in this microenvironment will be critical to the homeostasis and regeneration of the cornea and other ocular tissues.</description><identifier>ISSN: 0721-832X</identifier><identifier>EISSN: 1435-702X</identifier><identifier>DOI: 10.1007/s00417-019-04422-y</identifier><identifier>PMID: 31321523</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Animals ; Apoptosis ; Basic Science ; Blotting, Western ; Cell culture ; Cell Differentiation ; Cell interactions ; Cell Line ; Cell Proliferation ; Cornea ; Corneal Injuries - metabolism ; Corneal Injuries - pathology ; Disease Models, Animal ; Epithelial cells ; Epithelial Cells - metabolism ; Epithelium, Corneal - metabolism ; Epithelium, Corneal - pathology ; Extracellular signal-regulated kinase ; Fibroblasts ; Fluid flow ; Homeostasis ; Humans ; Immunohistochemistry ; Interfaces ; Kinases ; Lymphocytes ; Lymphocytes T ; Medicine ; Medicine &amp; Public Health ; Mesenchymal Stem Cells - cytology ; Mesenchyme ; Microenvironments ; Ophthalmology ; Rats ; Rats, Wistar ; Signal Transduction ; Wound healing ; Wound Healing - physiology</subject><ispartof>Graefe's archive for clinical and experimental ophthalmology, 2019-09, Vol.257 (9), p.1915-1924</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Graefe's Archive for Clinical and Experimental Ophthalmology is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-205f819670c0a935afe530d25655ff6df02de5eda6d7542b70b9a9015099e9433</citedby><cites>FETCH-LOGICAL-c441t-205f819670c0a935afe530d25655ff6df02de5eda6d7542b70b9a9015099e9433</cites><orcidid>0000-0002-1778-8944</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00417-019-04422-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00417-019-04422-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31321523$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kawata, Kosuke</creatorcontrib><creatorcontrib>Aoki, Shigehisa</creatorcontrib><creatorcontrib>Futamata, Maki</creatorcontrib><creatorcontrib>Yamamoto-Rikitake, Mihoko</creatorcontrib><creatorcontrib>Nakao, Isao</creatorcontrib><creatorcontrib>Enaida, Hiroshi</creatorcontrib><creatorcontrib>Toda, Shuji</creatorcontrib><title>Mesenchymal cells and fluid flow stimulation synergistically regulate the kinetics of corneal epithelial cells at the air–liquid interface</title><title>Graefe's archive for clinical and experimental ophthalmology</title><addtitle>Graefes Arch Clin Exp Ophthalmol</addtitle><addtitle>Graefes Arch Clin Exp Ophthalmol</addtitle><description>Purpose In vivo microenvironments are critical to tissue homeostasis and wound healing, and the cornea is regulated by a specific microenvironment complex that consists of cell–cell interactions, air–liquid interfaces, and fluid flow stimulation. In this study, we aimed to clarify the effects of and the correlations among these three component factors on the cell kinetics of corneal epithelial cells. Methods Human corneal epithelial–transformed (HCE–T) cells were cocultured with either primary rat corneal fibroblasts or NIH 3T3 fibroblasts. We employed a double-dish culture method to create an air–liquid interface and a gyratory shaker to create fluid flow stimulation. Morphometric and protein expression analyses were performed for the HCE–T cells. Results Both the primary rat fibroblasts and the NIH 3T3 cells promoted HCE–T cell proliferation, and the presence of fluid flow synergistically enhanced this effect and inhibited the apoptosis of HCE–T cells. Moreover, fluid flow enhanced the emergence of myofibroblasts when cocultured with primary rat fibroblasts or NIH 3T3 cells. Extracellular signal-regulated kinase and p38 signaling were regulated either synergistically or independently by both fluid flow and cellular interaction between the HCE–T and NIH 3T3 cells. Conclusion The cell–cell interaction and fluid flow stimulation in the air–liquid interface synergistically or independently regulated the behavior of HCE–T cells. Fluid flow accelerated the phenotypic change from corneal fibroblasts and NIH 3T3 cells to myofibroblasts. Elucidation of the multicomponent interplay in this microenvironment will be critical to the homeostasis and regeneration of the cornea and other ocular tissues.</description><subject>Animals</subject><subject>Apoptosis</subject><subject>Basic Science</subject><subject>Blotting, Western</subject><subject>Cell culture</subject><subject>Cell Differentiation</subject><subject>Cell interactions</subject><subject>Cell Line</subject><subject>Cell Proliferation</subject><subject>Cornea</subject><subject>Corneal Injuries - metabolism</subject><subject>Corneal Injuries - pathology</subject><subject>Disease Models, Animal</subject><subject>Epithelial cells</subject><subject>Epithelial Cells - metabolism</subject><subject>Epithelium, Corneal - metabolism</subject><subject>Epithelium, Corneal - pathology</subject><subject>Extracellular signal-regulated kinase</subject><subject>Fibroblasts</subject><subject>Fluid flow</subject><subject>Homeostasis</subject><subject>Humans</subject><subject>Immunohistochemistry</subject><subject>Interfaces</subject><subject>Kinases</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Mesenchymal Stem Cells - cytology</subject><subject>Mesenchyme</subject><subject>Microenvironments</subject><subject>Ophthalmology</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>Signal Transduction</subject><subject>Wound healing</subject><subject>Wound Healing - physiology</subject><issn>0721-832X</issn><issn>1435-702X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kc9u1DAQxi0EotvCC_RQWeLSS2D8L1kfqwooUhEXkHqzvMl469ZxtnYilBsP0BtvyJPgdAuVOHCZkeb7zTcjfYQcM3jLAJp3GUCypgKmK5CS82p-RlZMClU1wK-ekxU0nFVrwa8OyGHON1B4odhLciCY4ExxsSL3nzFjbK_n3gbaYgiZ2thRFya_1OE7zaPvp2BHP0Sa54hp68uotSHMNOF2kZCO10hvfcQiZDo42g4pYnHEnS9S8E_m4wNrffr142fwd8sZH0dMzrb4irxwNmR8_diPyLcP77-eX1SXXz5-Oj-7rFop2VhxUG7NdN1AC1YLZR0qAR1XtVLO1Z0D3qHCztZdoyTfNLDRVgNToDVqKcQROd377tJwN2EeTe_z8p-NOEzZcF4zzpWW64K--Qe9GaYUy3cLBVwqVctC8T3VpiHnhM7sku9tmg0Ds2Rl9lmZkpV5yMrMZenk0Xra9Nj9XfkTTgHEHshFiltMT7f_Y_sbxSqi1w</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Kawata, Kosuke</creator><creator>Aoki, Shigehisa</creator><creator>Futamata, Maki</creator><creator>Yamamoto-Rikitake, Mihoko</creator><creator>Nakao, Isao</creator><creator>Enaida, Hiroshi</creator><creator>Toda, Shuji</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1778-8944</orcidid></search><sort><creationdate>20190901</creationdate><title>Mesenchymal cells and fluid flow stimulation synergistically regulate the kinetics of corneal epithelial cells at the air–liquid interface</title><author>Kawata, Kosuke ; Aoki, Shigehisa ; Futamata, Maki ; Yamamoto-Rikitake, Mihoko ; Nakao, Isao ; Enaida, Hiroshi ; Toda, Shuji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-205f819670c0a935afe530d25655ff6df02de5eda6d7542b70b9a9015099e9433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Apoptosis</topic><topic>Basic Science</topic><topic>Blotting, Western</topic><topic>Cell culture</topic><topic>Cell Differentiation</topic><topic>Cell interactions</topic><topic>Cell Line</topic><topic>Cell Proliferation</topic><topic>Cornea</topic><topic>Corneal Injuries - metabolism</topic><topic>Corneal Injuries - pathology</topic><topic>Disease Models, Animal</topic><topic>Epithelial cells</topic><topic>Epithelial Cells - metabolism</topic><topic>Epithelium, Corneal - metabolism</topic><topic>Epithelium, Corneal - pathology</topic><topic>Extracellular signal-regulated kinase</topic><topic>Fibroblasts</topic><topic>Fluid flow</topic><topic>Homeostasis</topic><topic>Humans</topic><topic>Immunohistochemistry</topic><topic>Interfaces</topic><topic>Kinases</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Mesenchymal Stem Cells - cytology</topic><topic>Mesenchyme</topic><topic>Microenvironments</topic><topic>Ophthalmology</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>Signal Transduction</topic><topic>Wound healing</topic><topic>Wound Healing - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kawata, Kosuke</creatorcontrib><creatorcontrib>Aoki, Shigehisa</creatorcontrib><creatorcontrib>Futamata, Maki</creatorcontrib><creatorcontrib>Yamamoto-Rikitake, Mihoko</creatorcontrib><creatorcontrib>Nakao, Isao</creatorcontrib><creatorcontrib>Enaida, Hiroshi</creatorcontrib><creatorcontrib>Toda, Shuji</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Graefe's archive for clinical and experimental ophthalmology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kawata, Kosuke</au><au>Aoki, Shigehisa</au><au>Futamata, Maki</au><au>Yamamoto-Rikitake, Mihoko</au><au>Nakao, Isao</au><au>Enaida, Hiroshi</au><au>Toda, Shuji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mesenchymal cells and fluid flow stimulation synergistically regulate the kinetics of corneal epithelial cells at the air–liquid interface</atitle><jtitle>Graefe's archive for clinical and experimental ophthalmology</jtitle><stitle>Graefes Arch Clin Exp Ophthalmol</stitle><addtitle>Graefes Arch Clin Exp Ophthalmol</addtitle><date>2019-09-01</date><risdate>2019</risdate><volume>257</volume><issue>9</issue><spage>1915</spage><epage>1924</epage><pages>1915-1924</pages><issn>0721-832X</issn><eissn>1435-702X</eissn><abstract>Purpose In vivo microenvironments are critical to tissue homeostasis and wound healing, and the cornea is regulated by a specific microenvironment complex that consists of cell–cell interactions, air–liquid interfaces, and fluid flow stimulation. In this study, we aimed to clarify the effects of and the correlations among these three component factors on the cell kinetics of corneal epithelial cells. Methods Human corneal epithelial–transformed (HCE–T) cells were cocultured with either primary rat corneal fibroblasts or NIH 3T3 fibroblasts. We employed a double-dish culture method to create an air–liquid interface and a gyratory shaker to create fluid flow stimulation. Morphometric and protein expression analyses were performed for the HCE–T cells. Results Both the primary rat fibroblasts and the NIH 3T3 cells promoted HCE–T cell proliferation, and the presence of fluid flow synergistically enhanced this effect and inhibited the apoptosis of HCE–T cells. Moreover, fluid flow enhanced the emergence of myofibroblasts when cocultured with primary rat fibroblasts or NIH 3T3 cells. Extracellular signal-regulated kinase and p38 signaling were regulated either synergistically or independently by both fluid flow and cellular interaction between the HCE–T and NIH 3T3 cells. Conclusion The cell–cell interaction and fluid flow stimulation in the air–liquid interface synergistically or independently regulated the behavior of HCE–T cells. Fluid flow accelerated the phenotypic change from corneal fibroblasts and NIH 3T3 cells to myofibroblasts. Elucidation of the multicomponent interplay in this microenvironment will be critical to the homeostasis and regeneration of the cornea and other ocular tissues.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>31321523</pmid><doi>10.1007/s00417-019-04422-y</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-1778-8944</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0721-832X
ispartof Graefe's archive for clinical and experimental ophthalmology, 2019-09, Vol.257 (9), p.1915-1924
issn 0721-832X
1435-702X
language eng
recordid cdi_proquest_miscellaneous_2261225948
source MEDLINE; Springer Nature - Complete Springer Journals
subjects Animals
Apoptosis
Basic Science
Blotting, Western
Cell culture
Cell Differentiation
Cell interactions
Cell Line
Cell Proliferation
Cornea
Corneal Injuries - metabolism
Corneal Injuries - pathology
Disease Models, Animal
Epithelial cells
Epithelial Cells - metabolism
Epithelium, Corneal - metabolism
Epithelium, Corneal - pathology
Extracellular signal-regulated kinase
Fibroblasts
Fluid flow
Homeostasis
Humans
Immunohistochemistry
Interfaces
Kinases
Lymphocytes
Lymphocytes T
Medicine
Medicine & Public Health
Mesenchymal Stem Cells - cytology
Mesenchyme
Microenvironments
Ophthalmology
Rats
Rats, Wistar
Signal Transduction
Wound healing
Wound Healing - physiology
title Mesenchymal cells and fluid flow stimulation synergistically regulate the kinetics of corneal epithelial cells at the air–liquid interface
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T02%3A42%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mesenchymal%20cells%20and%20fluid%20flow%20stimulation%20synergistically%20regulate%20the%20kinetics%20of%20corneal%20epithelial%20cells%20at%20the%20air%E2%80%93liquid%20interface&rft.jtitle=Graefe's%20archive%20for%20clinical%20and%20experimental%20ophthalmology&rft.au=Kawata,%20Kosuke&rft.date=2019-09-01&rft.volume=257&rft.issue=9&rft.spage=1915&rft.epage=1924&rft.pages=1915-1924&rft.issn=0721-832X&rft.eissn=1435-702X&rft_id=info:doi/10.1007/s00417-019-04422-y&rft_dat=%3Cproquest_cross%3E2260245564%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2260245564&rft_id=info:pmid/31321523&rfr_iscdi=true