Large scale soil erosion modeling for a mountainous watershed

Soil erosion control requires a quantitative evaluation of potential soil erosion on a specific site. The Revised Universal Soil Loss Equation (RUSLE), Remote Sensing (RS), and Geographic Information System (GIS) were used to model soil erosion intensity for soil conservation and vegetation rehabili...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geo-Environment and Landscape Evolution II: Evolution, Monitoring, Simulation, Management and Remediation of the Geological Environment and Landscape Monitoring, Simulation, Management and Remediation of the Geological Environment and Landscape, 2006, Vol.1, p.55-67
Hauptverfasser: Zhou, P, Nieminen, J, Tokola, T, Luukkanen, O, Oliver, T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 67
container_issue
container_start_page 55
container_title Geo-Environment and Landscape Evolution II: Evolution, Monitoring, Simulation, Management and Remediation of the Geological Environment and Landscape
container_volume 1
creator Zhou, P
Nieminen, J
Tokola, T
Luukkanen, O
Oliver, T
description Soil erosion control requires a quantitative evaluation of potential soil erosion on a specific site. The Revised Universal Soil Loss Equation (RUSLE), Remote Sensing (RS), and Geographic Information System (GIS) were used to model soil erosion intensity for soil conservation and vegetation rehabilitation in an Upper Min River (UMR) watershed, which is in the Upper Yangtze River basin. Data used in this study to generate the soil loss were Landsat Enhanced Thematic Mapper (ETM) images, Digitized Elevation Model (DEM), soil erodibility, rainfall erosivity, and inventory data. The non-parametric k-nearest neighbor (k-NN) method was used to produce the cover management map by integrating the ETM images and vegetation coverage data measured in the 625 sample plots. The root mean square errors and significance of biases at pixel level were evaluated in order to find optimal parameters. Four raster maps have been produced for the soil erodibility, rainfall erosivity, slope length and steepness, and cover management factor, and the map with different soil loss risks has been produced for soil erosion potential. The result can be beneficial to the erosion control and ecological restoration in the degraded mountainous watershed.
doi_str_mv 10.2495/GEO060071
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_2261215593</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2261215593</sourcerecordid><originalsourceid>FETCH-LOGICAL-a1921-1b59b00821624259b72b4493ce004780d1c41f22085cd3885c19ce7f3557d5d33</originalsourceid><addsrcrecordid>eNp9jktPwzAQhC0eEqX0wD_wCXEJeNfvAwdUlYIUqReQequcxClBbgxxIv4-5nFmD9_OaEerIeQS2A0KK2_Xqw1TjGk4IjPQghdcCjgm52CEVAKU2Z78HFQhhNmekUVKbyyPsEwjn5G70g17T1PtQmbsAvVDTF3s6SE2PnT9nrZxoC7bqR9d18cp0U83-iG9-uaCnLYuJL_423Py8rB6Xj4W5Wb9tLwvCwcWoYBK2ooxg6BQYNYaKyEsr30uog1roBbQIjIj64abTLC11y2XUjey4XxOrn__vg_xY_Jp3B26VPsQXO9zoR2iAgQp7Xf06v8os2iN0vwLDmhZuA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2261215593</pqid></control><display><type>article</type><title>Large scale soil erosion modeling for a mountainous watershed</title><source>Alma/SFX Local Collection</source><creator>Zhou, P ; Nieminen, J ; Tokola, T ; Luukkanen, O ; Oliver, T</creator><creatorcontrib>Zhou, P ; Nieminen, J ; Tokola, T ; Luukkanen, O ; Oliver, T</creatorcontrib><description>Soil erosion control requires a quantitative evaluation of potential soil erosion on a specific site. The Revised Universal Soil Loss Equation (RUSLE), Remote Sensing (RS), and Geographic Information System (GIS) were used to model soil erosion intensity for soil conservation and vegetation rehabilitation in an Upper Min River (UMR) watershed, which is in the Upper Yangtze River basin. Data used in this study to generate the soil loss were Landsat Enhanced Thematic Mapper (ETM) images, Digitized Elevation Model (DEM), soil erodibility, rainfall erosivity, and inventory data. The non-parametric k-nearest neighbor (k-NN) method was used to produce the cover management map by integrating the ETM images and vegetation coverage data measured in the 625 sample plots. The root mean square errors and significance of biases at pixel level were evaluated in order to find optimal parameters. Four raster maps have been produced for the soil erodibility, rainfall erosivity, slope length and steepness, and cover management factor, and the map with different soil loss risks has been produced for soil erosion potential. The result can be beneficial to the erosion control and ecological restoration in the degraded mountainous watershed.</description><identifier>ISSN: 1746-448X</identifier><identifier>ISBN: 184564168X</identifier><identifier>ISBN: 9781845641689</identifier><identifier>EISSN: 1743-3541</identifier><identifier>DOI: 10.2495/GEO060071</identifier><language>eng</language><publisher>Southampton: W I T Press</publisher><subject>Digital Elevation Models ; Digitization ; Ecological effects ; Environmental restoration ; Erosion control ; Erosion mechanisms ; Geographic information systems ; Image enhancement ; Landsat ; Landsat satellites ; Mountains ; Order parameters ; Quantitative analysis ; Rainfall ; Rehabilitation ; Remote sensing ; Restoration ; River basins ; Rivers ; Satellite imagery ; Slopes ; Soil conservation ; Soil erosion ; Soil mapping ; Vegetation ; Watersheds</subject><ispartof>Geo-Environment and Landscape Evolution II: Evolution, Monitoring, Simulation, Management and Remediation of the Geological Environment and Landscape, 2006, Vol.1, p.55-67</ispartof><rights>2006. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the associated terms available at https://www.witpress.com/elibrary .</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,776,780,4009,4035,4036,27902,27903,27904</link.rule.ids></links><search><creatorcontrib>Zhou, P</creatorcontrib><creatorcontrib>Nieminen, J</creatorcontrib><creatorcontrib>Tokola, T</creatorcontrib><creatorcontrib>Luukkanen, O</creatorcontrib><creatorcontrib>Oliver, T</creatorcontrib><title>Large scale soil erosion modeling for a mountainous watershed</title><title>Geo-Environment and Landscape Evolution II: Evolution, Monitoring, Simulation, Management and Remediation of the Geological Environment and Landscape</title><description>Soil erosion control requires a quantitative evaluation of potential soil erosion on a specific site. The Revised Universal Soil Loss Equation (RUSLE), Remote Sensing (RS), and Geographic Information System (GIS) were used to model soil erosion intensity for soil conservation and vegetation rehabilitation in an Upper Min River (UMR) watershed, which is in the Upper Yangtze River basin. Data used in this study to generate the soil loss were Landsat Enhanced Thematic Mapper (ETM) images, Digitized Elevation Model (DEM), soil erodibility, rainfall erosivity, and inventory data. The non-parametric k-nearest neighbor (k-NN) method was used to produce the cover management map by integrating the ETM images and vegetation coverage data measured in the 625 sample plots. The root mean square errors and significance of biases at pixel level were evaluated in order to find optimal parameters. Four raster maps have been produced for the soil erodibility, rainfall erosivity, slope length and steepness, and cover management factor, and the map with different soil loss risks has been produced for soil erosion potential. The result can be beneficial to the erosion control and ecological restoration in the degraded mountainous watershed.</description><subject>Digital Elevation Models</subject><subject>Digitization</subject><subject>Ecological effects</subject><subject>Environmental restoration</subject><subject>Erosion control</subject><subject>Erosion mechanisms</subject><subject>Geographic information systems</subject><subject>Image enhancement</subject><subject>Landsat</subject><subject>Landsat satellites</subject><subject>Mountains</subject><subject>Order parameters</subject><subject>Quantitative analysis</subject><subject>Rainfall</subject><subject>Rehabilitation</subject><subject>Remote sensing</subject><subject>Restoration</subject><subject>River basins</subject><subject>Rivers</subject><subject>Satellite imagery</subject><subject>Slopes</subject><subject>Soil conservation</subject><subject>Soil erosion</subject><subject>Soil mapping</subject><subject>Vegetation</subject><subject>Watersheds</subject><issn>1746-448X</issn><issn>1743-3541</issn><isbn>184564168X</isbn><isbn>9781845641689</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9jktPwzAQhC0eEqX0wD_wCXEJeNfvAwdUlYIUqReQequcxClBbgxxIv4-5nFmD9_OaEerIeQS2A0KK2_Xqw1TjGk4IjPQghdcCjgm52CEVAKU2Z78HFQhhNmekUVKbyyPsEwjn5G70g17T1PtQmbsAvVDTF3s6SE2PnT9nrZxoC7bqR9d18cp0U83-iG9-uaCnLYuJL_423Py8rB6Xj4W5Wb9tLwvCwcWoYBK2ooxg6BQYNYaKyEsr30uog1roBbQIjIj64abTLC11y2XUjey4XxOrn__vg_xY_Jp3B26VPsQXO9zoR2iAgQp7Xf06v8os2iN0vwLDmhZuA</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Zhou, P</creator><creator>Nieminen, J</creator><creator>Tokola, T</creator><creator>Luukkanen, O</creator><creator>Oliver, T</creator><general>W I T Press</general><scope>7ST</scope><scope>7U6</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>7SN</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>SOI</scope></search><sort><creationdate>2006</creationdate><title>Large scale soil erosion modeling for a mountainous watershed</title><author>Zhou, P ; Nieminen, J ; Tokola, T ; Luukkanen, O ; Oliver, T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a1921-1b59b00821624259b72b4493ce004780d1c41f22085cd3885c19ce7f3557d5d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Digital Elevation Models</topic><topic>Digitization</topic><topic>Ecological effects</topic><topic>Environmental restoration</topic><topic>Erosion control</topic><topic>Erosion mechanisms</topic><topic>Geographic information systems</topic><topic>Image enhancement</topic><topic>Landsat</topic><topic>Landsat satellites</topic><topic>Mountains</topic><topic>Order parameters</topic><topic>Quantitative analysis</topic><topic>Rainfall</topic><topic>Rehabilitation</topic><topic>Remote sensing</topic><topic>Restoration</topic><topic>River basins</topic><topic>Rivers</topic><topic>Satellite imagery</topic><topic>Slopes</topic><topic>Soil conservation</topic><topic>Soil erosion</topic><topic>Soil mapping</topic><topic>Vegetation</topic><topic>Watersheds</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhou, P</creatorcontrib><creatorcontrib>Nieminen, J</creatorcontrib><creatorcontrib>Tokola, T</creatorcontrib><creatorcontrib>Luukkanen, O</creatorcontrib><creatorcontrib>Oliver, T</creatorcontrib><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Ecology Abstracts</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Environment Abstracts</collection><jtitle>Geo-Environment and Landscape Evolution II: Evolution, Monitoring, Simulation, Management and Remediation of the Geological Environment and Landscape</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, P</au><au>Nieminen, J</au><au>Tokola, T</au><au>Luukkanen, O</au><au>Oliver, T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large scale soil erosion modeling for a mountainous watershed</atitle><jtitle>Geo-Environment and Landscape Evolution II: Evolution, Monitoring, Simulation, Management and Remediation of the Geological Environment and Landscape</jtitle><date>2006</date><risdate>2006</risdate><volume>1</volume><spage>55</spage><epage>67</epage><pages>55-67</pages><issn>1746-448X</issn><eissn>1743-3541</eissn><isbn>184564168X</isbn><isbn>9781845641689</isbn><abstract>Soil erosion control requires a quantitative evaluation of potential soil erosion on a specific site. The Revised Universal Soil Loss Equation (RUSLE), Remote Sensing (RS), and Geographic Information System (GIS) were used to model soil erosion intensity for soil conservation and vegetation rehabilitation in an Upper Min River (UMR) watershed, which is in the Upper Yangtze River basin. Data used in this study to generate the soil loss were Landsat Enhanced Thematic Mapper (ETM) images, Digitized Elevation Model (DEM), soil erodibility, rainfall erosivity, and inventory data. The non-parametric k-nearest neighbor (k-NN) method was used to produce the cover management map by integrating the ETM images and vegetation coverage data measured in the 625 sample plots. The root mean square errors and significance of biases at pixel level were evaluated in order to find optimal parameters. Four raster maps have been produced for the soil erodibility, rainfall erosivity, slope length and steepness, and cover management factor, and the map with different soil loss risks has been produced for soil erosion potential. The result can be beneficial to the erosion control and ecological restoration in the degraded mountainous watershed.</abstract><cop>Southampton</cop><pub>W I T Press</pub><doi>10.2495/GEO060071</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1746-448X
ispartof Geo-Environment and Landscape Evolution II: Evolution, Monitoring, Simulation, Management and Remediation of the Geological Environment and Landscape, 2006, Vol.1, p.55-67
issn 1746-448X
1743-3541
language eng
recordid cdi_proquest_miscellaneous_2261215593
source Alma/SFX Local Collection
subjects Digital Elevation Models
Digitization
Ecological effects
Environmental restoration
Erosion control
Erosion mechanisms
Geographic information systems
Image enhancement
Landsat
Landsat satellites
Mountains
Order parameters
Quantitative analysis
Rainfall
Rehabilitation
Remote sensing
Restoration
River basins
Rivers
Satellite imagery
Slopes
Soil conservation
Soil erosion
Soil mapping
Vegetation
Watersheds
title Large scale soil erosion modeling for a mountainous watershed
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T12%3A13%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large%20scale%20soil%20erosion%20modeling%20for%20a%20mountainous%20watershed&rft.jtitle=Geo-Environment%20and%20Landscape%20Evolution%20II:%20Evolution,%20Monitoring,%20Simulation,%20Management%20and%20Remediation%20of%20the%20Geological%20Environment%20and%20Landscape&rft.au=Zhou,%20P&rft.date=2006&rft.volume=1&rft.spage=55&rft.epage=67&rft.pages=55-67&rft.issn=1746-448X&rft.eissn=1743-3541&rft.isbn=184564168X&rft.isbn_list=9781845641689&rft_id=info:doi/10.2495/GEO060071&rft_dat=%3Cproquest%3E2261215593%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2261215593&rft_id=info:pmid/&rfr_iscdi=true