Biomechanical In Vitro Test of a Novel Dynamic Spinal Stabilization System Incorporating Polycarbonate Urethane Material Under Physiological Conditions

Posterior dynamic stabilization systems (PDSS) were developed to provide stabilization to pathologic or hypermobile spinal segments while maintaining the healthy biomechanics of the spine. Numerous novel dynamic devices incorporate the temperature and moisture dependent material polycarbonate uretha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomechanical engineering 2020-01, Vol.142 (1)
Hauptverfasser: Beckmann, Agnes, Nicolini, Luis Fernando, Grevenstein, David, Backes, Hermann, Oikonomidis, Stavros, Sobottke, Rolf, Kobbe, Philipp, Hildebrand, Frank, Stoffel, Marcus, Markert, Bernd, Siewe, Jan, Herren, Christian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Journal of biomechanical engineering
container_volume 142
creator Beckmann, Agnes
Nicolini, Luis Fernando
Grevenstein, David
Backes, Hermann
Oikonomidis, Stavros
Sobottke, Rolf
Kobbe, Philipp
Hildebrand, Frank
Stoffel, Marcus
Markert, Bernd
Siewe, Jan
Herren, Christian
description Posterior dynamic stabilization systems (PDSS) were developed to provide stabilization to pathologic or hypermobile spinal segments while maintaining the healthy biomechanics of the spine. Numerous novel dynamic devices incorporate the temperature and moisture dependent material polycarbonate urethane (PCU) due to its mechanical properties and biocompatibility. In this study, standardized pure moment in vitro tests were carried out on human lumbar spines to evaluate the performance of a device containing PCU. An environmental chamber with controlled moisture and temperature was included in the setup to meet the requirements of testing under physiological conditions. Three test conditions were compared: (1) native spine, (2) dynamic instrumentation, and (3) dynamic instrumentation with decompression. The ranges of motion, centers of rotation, and relative pedicle screw motions were evaluated. The device displayed significant stiffening in flexion–extension, lateral bending, and axial rotation load directions. A reduction of the native range of motion diminished the stiffening effect along the spinal column and has the potential to reduce the risk of the onset of degeneration of an adjacent segment. In combination with decompression, the implant decreased the native range of motion for flexion–extension and skew bending, but not for lateral bending and axial rotation. Curve fittings using the sigmoid function were performed to parameterize all load-deflection curves in order to enhance accurate numerical model calibrations and comparisons. The device caused a shift of the center of rotation (COR) in the posterior and caudal direction during flexion–extension loading.
doi_str_mv 10.1115/1.4044242
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2259906660</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259906660</sourcerecordid><originalsourceid>FETCH-LOGICAL-a235t-48652f9e0cd126e12e32136b0fbfa97167b629b5404a8b8282ed99bbe3d726703</originalsourceid><addsrcrecordid>eNo9kU1v1DAQhi0EokvhwBkJ-QiHFI8dO_YRlq9KBSptl6tlJ5PWVRIvdhYp_BH-Ll524TSa8TPvjN8h5DmwCwCQb-CiZnXNa_6ArEByXWkj4SFZMah1xRoBZ-RJzveMAeiaPSZnAkR50nJFfr8LccT2zk2hdQO9nOj3MKdIbzDPNPbU0a_xJw70_TK5MbR0swtT4Taz82EIv9wc4kQ3S55xLM1tTLuYSnG6pddxWFqXfJzcjHSbcC5DkH4pWQpFYjt1mOj13ZJDHOLt3_HrOHXhIJmfkke9GzI-O8Vzsv344Wb9ubr69uly_faqclzIuaq1krw3yNoOuELgKDgI5Vnve2caUI1X3HhZ_HHaa645dsZ4j6JruGqYOCevjrq7FH_sy6ftGHKLw1B2jftsOZfGMKXUAX19RNsUc07Y210Ko0uLBWYPd7BgT3co7MuT7N6P2P0n_xlfgBdHwOUR7X3cp2JrtkaWVbn4A1yEjUo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259906660</pqid></control><display><type>article</type><title>Biomechanical In Vitro Test of a Novel Dynamic Spinal Stabilization System Incorporating Polycarbonate Urethane Material Under Physiological Conditions</title><source>MEDLINE</source><source>ASME Transactions Journals (Current)</source><source>Alma/SFX Local Collection</source><creator>Beckmann, Agnes ; Nicolini, Luis Fernando ; Grevenstein, David ; Backes, Hermann ; Oikonomidis, Stavros ; Sobottke, Rolf ; Kobbe, Philipp ; Hildebrand, Frank ; Stoffel, Marcus ; Markert, Bernd ; Siewe, Jan ; Herren, Christian</creator><creatorcontrib>Beckmann, Agnes ; Nicolini, Luis Fernando ; Grevenstein, David ; Backes, Hermann ; Oikonomidis, Stavros ; Sobottke, Rolf ; Kobbe, Philipp ; Hildebrand, Frank ; Stoffel, Marcus ; Markert, Bernd ; Siewe, Jan ; Herren, Christian</creatorcontrib><description>Posterior dynamic stabilization systems (PDSS) were developed to provide stabilization to pathologic or hypermobile spinal segments while maintaining the healthy biomechanics of the spine. Numerous novel dynamic devices incorporate the temperature and moisture dependent material polycarbonate urethane (PCU) due to its mechanical properties and biocompatibility. In this study, standardized pure moment in vitro tests were carried out on human lumbar spines to evaluate the performance of a device containing PCU. An environmental chamber with controlled moisture and temperature was included in the setup to meet the requirements of testing under physiological conditions. Three test conditions were compared: (1) native spine, (2) dynamic instrumentation, and (3) dynamic instrumentation with decompression. The ranges of motion, centers of rotation, and relative pedicle screw motions were evaluated. The device displayed significant stiffening in flexion–extension, lateral bending, and axial rotation load directions. A reduction of the native range of motion diminished the stiffening effect along the spinal column and has the potential to reduce the risk of the onset of degeneration of an adjacent segment. In combination with decompression, the implant decreased the native range of motion for flexion–extension and skew bending, but not for lateral bending and axial rotation. Curve fittings using the sigmoid function were performed to parameterize all load-deflection curves in order to enhance accurate numerical model calibrations and comparisons. The device caused a shift of the center of rotation (COR) in the posterior and caudal direction during flexion–extension loading.</description><identifier>ISSN: 0148-0731</identifier><identifier>ISSN: 1528-8951</identifier><identifier>EISSN: 1528-8951</identifier><identifier>DOI: 10.1115/1.4044242</identifier><identifier>PMID: 31314885</identifier><language>eng</language><publisher>United States: ASME</publisher><subject>Aged ; Biomechanical Phenomena ; Female ; Humans ; Lumbar Vertebrae - physiology ; Male ; Materials Testing ; Mechanical Phenomena ; Mechanical Tests ; Middle Aged ; Polycarboxylate Cement - chemistry ; Range of Motion, Articular ; Urethane</subject><ispartof>Journal of biomechanical engineering, 2020-01, Vol.142 (1)</ispartof><rights>Copyright © 2020 by ASME.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a235t-48652f9e0cd126e12e32136b0fbfa97167b629b5404a8b8282ed99bbe3d726703</citedby><cites>FETCH-LOGICAL-a235t-48652f9e0cd126e12e32136b0fbfa97167b629b5404a8b8282ed99bbe3d726703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906,38501</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31314885$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Beckmann, Agnes</creatorcontrib><creatorcontrib>Nicolini, Luis Fernando</creatorcontrib><creatorcontrib>Grevenstein, David</creatorcontrib><creatorcontrib>Backes, Hermann</creatorcontrib><creatorcontrib>Oikonomidis, Stavros</creatorcontrib><creatorcontrib>Sobottke, Rolf</creatorcontrib><creatorcontrib>Kobbe, Philipp</creatorcontrib><creatorcontrib>Hildebrand, Frank</creatorcontrib><creatorcontrib>Stoffel, Marcus</creatorcontrib><creatorcontrib>Markert, Bernd</creatorcontrib><creatorcontrib>Siewe, Jan</creatorcontrib><creatorcontrib>Herren, Christian</creatorcontrib><title>Biomechanical In Vitro Test of a Novel Dynamic Spinal Stabilization System Incorporating Polycarbonate Urethane Material Under Physiological Conditions</title><title>Journal of biomechanical engineering</title><addtitle>J Biomech Eng</addtitle><addtitle>J Biomech Eng</addtitle><description>Posterior dynamic stabilization systems (PDSS) were developed to provide stabilization to pathologic or hypermobile spinal segments while maintaining the healthy biomechanics of the spine. Numerous novel dynamic devices incorporate the temperature and moisture dependent material polycarbonate urethane (PCU) due to its mechanical properties and biocompatibility. In this study, standardized pure moment in vitro tests were carried out on human lumbar spines to evaluate the performance of a device containing PCU. An environmental chamber with controlled moisture and temperature was included in the setup to meet the requirements of testing under physiological conditions. Three test conditions were compared: (1) native spine, (2) dynamic instrumentation, and (3) dynamic instrumentation with decompression. The ranges of motion, centers of rotation, and relative pedicle screw motions were evaluated. The device displayed significant stiffening in flexion–extension, lateral bending, and axial rotation load directions. A reduction of the native range of motion diminished the stiffening effect along the spinal column and has the potential to reduce the risk of the onset of degeneration of an adjacent segment. In combination with decompression, the implant decreased the native range of motion for flexion–extension and skew bending, but not for lateral bending and axial rotation. Curve fittings using the sigmoid function were performed to parameterize all load-deflection curves in order to enhance accurate numerical model calibrations and comparisons. The device caused a shift of the center of rotation (COR) in the posterior and caudal direction during flexion–extension loading.</description><subject>Aged</subject><subject>Biomechanical Phenomena</subject><subject>Female</subject><subject>Humans</subject><subject>Lumbar Vertebrae - physiology</subject><subject>Male</subject><subject>Materials Testing</subject><subject>Mechanical Phenomena</subject><subject>Mechanical Tests</subject><subject>Middle Aged</subject><subject>Polycarboxylate Cement - chemistry</subject><subject>Range of Motion, Articular</subject><subject>Urethane</subject><issn>0148-0731</issn><issn>1528-8951</issn><issn>1528-8951</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kU1v1DAQhi0EokvhwBkJ-QiHFI8dO_YRlq9KBSptl6tlJ5PWVRIvdhYp_BH-Ll524TSa8TPvjN8h5DmwCwCQb-CiZnXNa_6ArEByXWkj4SFZMah1xRoBZ-RJzveMAeiaPSZnAkR50nJFfr8LccT2zk2hdQO9nOj3MKdIbzDPNPbU0a_xJw70_TK5MbR0swtT4Taz82EIv9wc4kQ3S55xLM1tTLuYSnG6pddxWFqXfJzcjHSbcC5DkH4pWQpFYjt1mOj13ZJDHOLt3_HrOHXhIJmfkke9GzI-O8Vzsv344Wb9ubr69uly_faqclzIuaq1krw3yNoOuELgKDgI5Vnve2caUI1X3HhZ_HHaa645dsZ4j6JruGqYOCevjrq7FH_sy6ftGHKLw1B2jftsOZfGMKXUAX19RNsUc07Y210Ko0uLBWYPd7BgT3co7MuT7N6P2P0n_xlfgBdHwOUR7X3cp2JrtkaWVbn4A1yEjUo</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Beckmann, Agnes</creator><creator>Nicolini, Luis Fernando</creator><creator>Grevenstein, David</creator><creator>Backes, Hermann</creator><creator>Oikonomidis, Stavros</creator><creator>Sobottke, Rolf</creator><creator>Kobbe, Philipp</creator><creator>Hildebrand, Frank</creator><creator>Stoffel, Marcus</creator><creator>Markert, Bernd</creator><creator>Siewe, Jan</creator><creator>Herren, Christian</creator><general>ASME</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20200101</creationdate><title>Biomechanical In Vitro Test of a Novel Dynamic Spinal Stabilization System Incorporating Polycarbonate Urethane Material Under Physiological Conditions</title><author>Beckmann, Agnes ; Nicolini, Luis Fernando ; Grevenstein, David ; Backes, Hermann ; Oikonomidis, Stavros ; Sobottke, Rolf ; Kobbe, Philipp ; Hildebrand, Frank ; Stoffel, Marcus ; Markert, Bernd ; Siewe, Jan ; Herren, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a235t-48652f9e0cd126e12e32136b0fbfa97167b629b5404a8b8282ed99bbe3d726703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aged</topic><topic>Biomechanical Phenomena</topic><topic>Female</topic><topic>Humans</topic><topic>Lumbar Vertebrae - physiology</topic><topic>Male</topic><topic>Materials Testing</topic><topic>Mechanical Phenomena</topic><topic>Mechanical Tests</topic><topic>Middle Aged</topic><topic>Polycarboxylate Cement - chemistry</topic><topic>Range of Motion, Articular</topic><topic>Urethane</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beckmann, Agnes</creatorcontrib><creatorcontrib>Nicolini, Luis Fernando</creatorcontrib><creatorcontrib>Grevenstein, David</creatorcontrib><creatorcontrib>Backes, Hermann</creatorcontrib><creatorcontrib>Oikonomidis, Stavros</creatorcontrib><creatorcontrib>Sobottke, Rolf</creatorcontrib><creatorcontrib>Kobbe, Philipp</creatorcontrib><creatorcontrib>Hildebrand, Frank</creatorcontrib><creatorcontrib>Stoffel, Marcus</creatorcontrib><creatorcontrib>Markert, Bernd</creatorcontrib><creatorcontrib>Siewe, Jan</creatorcontrib><creatorcontrib>Herren, Christian</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomechanical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beckmann, Agnes</au><au>Nicolini, Luis Fernando</au><au>Grevenstein, David</au><au>Backes, Hermann</au><au>Oikonomidis, Stavros</au><au>Sobottke, Rolf</au><au>Kobbe, Philipp</au><au>Hildebrand, Frank</au><au>Stoffel, Marcus</au><au>Markert, Bernd</au><au>Siewe, Jan</au><au>Herren, Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biomechanical In Vitro Test of a Novel Dynamic Spinal Stabilization System Incorporating Polycarbonate Urethane Material Under Physiological Conditions</atitle><jtitle>Journal of biomechanical engineering</jtitle><stitle>J Biomech Eng</stitle><addtitle>J Biomech Eng</addtitle><date>2020-01-01</date><risdate>2020</risdate><volume>142</volume><issue>1</issue><issn>0148-0731</issn><issn>1528-8951</issn><eissn>1528-8951</eissn><abstract>Posterior dynamic stabilization systems (PDSS) were developed to provide stabilization to pathologic or hypermobile spinal segments while maintaining the healthy biomechanics of the spine. Numerous novel dynamic devices incorporate the temperature and moisture dependent material polycarbonate urethane (PCU) due to its mechanical properties and biocompatibility. In this study, standardized pure moment in vitro tests were carried out on human lumbar spines to evaluate the performance of a device containing PCU. An environmental chamber with controlled moisture and temperature was included in the setup to meet the requirements of testing under physiological conditions. Three test conditions were compared: (1) native spine, (2) dynamic instrumentation, and (3) dynamic instrumentation with decompression. The ranges of motion, centers of rotation, and relative pedicle screw motions were evaluated. The device displayed significant stiffening in flexion–extension, lateral bending, and axial rotation load directions. A reduction of the native range of motion diminished the stiffening effect along the spinal column and has the potential to reduce the risk of the onset of degeneration of an adjacent segment. In combination with decompression, the implant decreased the native range of motion for flexion–extension and skew bending, but not for lateral bending and axial rotation. Curve fittings using the sigmoid function were performed to parameterize all load-deflection curves in order to enhance accurate numerical model calibrations and comparisons. The device caused a shift of the center of rotation (COR) in the posterior and caudal direction during flexion–extension loading.</abstract><cop>United States</cop><pub>ASME</pub><pmid>31314885</pmid><doi>10.1115/1.4044242</doi></addata></record>
fulltext fulltext
identifier ISSN: 0148-0731
ispartof Journal of biomechanical engineering, 2020-01, Vol.142 (1)
issn 0148-0731
1528-8951
1528-8951
language eng
recordid cdi_proquest_miscellaneous_2259906660
source MEDLINE; ASME Transactions Journals (Current); Alma/SFX Local Collection
subjects Aged
Biomechanical Phenomena
Female
Humans
Lumbar Vertebrae - physiology
Male
Materials Testing
Mechanical Phenomena
Mechanical Tests
Middle Aged
Polycarboxylate Cement - chemistry
Range of Motion, Articular
Urethane
title Biomechanical In Vitro Test of a Novel Dynamic Spinal Stabilization System Incorporating Polycarbonate Urethane Material Under Physiological Conditions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T06%3A17%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biomechanical%20In%20Vitro%20Test%20of%20a%20Novel%20Dynamic%20Spinal%20Stabilization%20System%20Incorporating%20Polycarbonate%20Urethane%20Material%20Under%20Physiological%20Conditions&rft.jtitle=Journal%20of%20biomechanical%20engineering&rft.au=Beckmann,%20Agnes&rft.date=2020-01-01&rft.volume=142&rft.issue=1&rft.issn=0148-0731&rft.eissn=1528-8951&rft_id=info:doi/10.1115/1.4044242&rft_dat=%3Cproquest_cross%3E2259906660%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259906660&rft_id=info:pmid/31314885&rfr_iscdi=true