Biomechanical In Vitro Test of a Novel Dynamic Spinal Stabilization System Incorporating Polycarbonate Urethane Material Under Physiological Conditions
Posterior dynamic stabilization systems (PDSS) were developed to provide stabilization to pathologic or hypermobile spinal segments while maintaining the healthy biomechanics of the spine. Numerous novel dynamic devices incorporate the temperature and moisture dependent material polycarbonate uretha...
Gespeichert in:
Veröffentlicht in: | Journal of biomechanical engineering 2020-01, Vol.142 (1) |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Journal of biomechanical engineering |
container_volume | 142 |
creator | Beckmann, Agnes Nicolini, Luis Fernando Grevenstein, David Backes, Hermann Oikonomidis, Stavros Sobottke, Rolf Kobbe, Philipp Hildebrand, Frank Stoffel, Marcus Markert, Bernd Siewe, Jan Herren, Christian |
description | Posterior dynamic stabilization systems (PDSS) were developed to provide stabilization to pathologic or hypermobile spinal segments while maintaining the healthy biomechanics of the spine. Numerous novel dynamic devices incorporate the temperature and moisture dependent material polycarbonate urethane (PCU) due to its mechanical properties and biocompatibility. In this study, standardized pure moment in vitro tests were carried out on human lumbar spines to evaluate the performance of a device containing PCU. An environmental chamber with controlled moisture and temperature was included in the setup to meet the requirements of testing under physiological conditions. Three test conditions were compared: (1) native spine, (2) dynamic instrumentation, and (3) dynamic instrumentation with decompression. The ranges of motion, centers of rotation, and relative pedicle screw motions were evaluated. The device displayed significant stiffening in flexion–extension, lateral bending, and axial rotation load directions. A reduction of the native range of motion diminished the stiffening effect along the spinal column and has the potential to reduce the risk of the onset of degeneration of an adjacent segment. In combination with decompression, the implant decreased the native range of motion for flexion–extension and skew bending, but not for lateral bending and axial rotation. Curve fittings using the sigmoid function were performed to parameterize all load-deflection curves in order to enhance accurate numerical model calibrations and comparisons. The device caused a shift of the center of rotation (COR) in the posterior and caudal direction during flexion–extension loading. |
doi_str_mv | 10.1115/1.4044242 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2259906660</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259906660</sourcerecordid><originalsourceid>FETCH-LOGICAL-a235t-48652f9e0cd126e12e32136b0fbfa97167b629b5404a8b8282ed99bbe3d726703</originalsourceid><addsrcrecordid>eNo9kU1v1DAQhi0EokvhwBkJ-QiHFI8dO_YRlq9KBSptl6tlJ5PWVRIvdhYp_BH-Ll524TSa8TPvjN8h5DmwCwCQb-CiZnXNa_6ArEByXWkj4SFZMah1xRoBZ-RJzveMAeiaPSZnAkR50nJFfr8LccT2zk2hdQO9nOj3MKdIbzDPNPbU0a_xJw70_TK5MbR0swtT4Taz82EIv9wc4kQ3S55xLM1tTLuYSnG6pddxWFqXfJzcjHSbcC5DkH4pWQpFYjt1mOj13ZJDHOLt3_HrOHXhIJmfkke9GzI-O8Vzsv344Wb9ubr69uly_faqclzIuaq1krw3yNoOuELgKDgI5Vnve2caUI1X3HhZ_HHaa645dsZ4j6JruGqYOCevjrq7FH_sy6ftGHKLw1B2jftsOZfGMKXUAX19RNsUc07Y210Ko0uLBWYPd7BgT3co7MuT7N6P2P0n_xlfgBdHwOUR7X3cp2JrtkaWVbn4A1yEjUo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259906660</pqid></control><display><type>article</type><title>Biomechanical In Vitro Test of a Novel Dynamic Spinal Stabilization System Incorporating Polycarbonate Urethane Material Under Physiological Conditions</title><source>MEDLINE</source><source>ASME Transactions Journals (Current)</source><source>Alma/SFX Local Collection</source><creator>Beckmann, Agnes ; Nicolini, Luis Fernando ; Grevenstein, David ; Backes, Hermann ; Oikonomidis, Stavros ; Sobottke, Rolf ; Kobbe, Philipp ; Hildebrand, Frank ; Stoffel, Marcus ; Markert, Bernd ; Siewe, Jan ; Herren, Christian</creator><creatorcontrib>Beckmann, Agnes ; Nicolini, Luis Fernando ; Grevenstein, David ; Backes, Hermann ; Oikonomidis, Stavros ; Sobottke, Rolf ; Kobbe, Philipp ; Hildebrand, Frank ; Stoffel, Marcus ; Markert, Bernd ; Siewe, Jan ; Herren, Christian</creatorcontrib><description>Posterior dynamic stabilization systems (PDSS) were developed to provide stabilization to pathologic or hypermobile spinal segments while maintaining the healthy biomechanics of the spine. Numerous novel dynamic devices incorporate the temperature and moisture dependent material polycarbonate urethane (PCU) due to its mechanical properties and biocompatibility. In this study, standardized pure moment in vitro tests were carried out on human lumbar spines to evaluate the performance of a device containing PCU. An environmental chamber with controlled moisture and temperature was included in the setup to meet the requirements of testing under physiological conditions. Three test conditions were compared: (1) native spine, (2) dynamic instrumentation, and (3) dynamic instrumentation with decompression. The ranges of motion, centers of rotation, and relative pedicle screw motions were evaluated. The device displayed significant stiffening in flexion–extension, lateral bending, and axial rotation load directions. A reduction of the native range of motion diminished the stiffening effect along the spinal column and has the potential to reduce the risk of the onset of degeneration of an adjacent segment. In combination with decompression, the implant decreased the native range of motion for flexion–extension and skew bending, but not for lateral bending and axial rotation. Curve fittings using the sigmoid function were performed to parameterize all load-deflection curves in order to enhance accurate numerical model calibrations and comparisons. The device caused a shift of the center of rotation (COR) in the posterior and caudal direction during flexion–extension loading.</description><identifier>ISSN: 0148-0731</identifier><identifier>ISSN: 1528-8951</identifier><identifier>EISSN: 1528-8951</identifier><identifier>DOI: 10.1115/1.4044242</identifier><identifier>PMID: 31314885</identifier><language>eng</language><publisher>United States: ASME</publisher><subject>Aged ; Biomechanical Phenomena ; Female ; Humans ; Lumbar Vertebrae - physiology ; Male ; Materials Testing ; Mechanical Phenomena ; Mechanical Tests ; Middle Aged ; Polycarboxylate Cement - chemistry ; Range of Motion, Articular ; Urethane</subject><ispartof>Journal of biomechanical engineering, 2020-01, Vol.142 (1)</ispartof><rights>Copyright © 2020 by ASME.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a235t-48652f9e0cd126e12e32136b0fbfa97167b629b5404a8b8282ed99bbe3d726703</citedby><cites>FETCH-LOGICAL-a235t-48652f9e0cd126e12e32136b0fbfa97167b629b5404a8b8282ed99bbe3d726703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906,38501</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31314885$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Beckmann, Agnes</creatorcontrib><creatorcontrib>Nicolini, Luis Fernando</creatorcontrib><creatorcontrib>Grevenstein, David</creatorcontrib><creatorcontrib>Backes, Hermann</creatorcontrib><creatorcontrib>Oikonomidis, Stavros</creatorcontrib><creatorcontrib>Sobottke, Rolf</creatorcontrib><creatorcontrib>Kobbe, Philipp</creatorcontrib><creatorcontrib>Hildebrand, Frank</creatorcontrib><creatorcontrib>Stoffel, Marcus</creatorcontrib><creatorcontrib>Markert, Bernd</creatorcontrib><creatorcontrib>Siewe, Jan</creatorcontrib><creatorcontrib>Herren, Christian</creatorcontrib><title>Biomechanical In Vitro Test of a Novel Dynamic Spinal Stabilization System Incorporating Polycarbonate Urethane Material Under Physiological Conditions</title><title>Journal of biomechanical engineering</title><addtitle>J Biomech Eng</addtitle><addtitle>J Biomech Eng</addtitle><description>Posterior dynamic stabilization systems (PDSS) were developed to provide stabilization to pathologic or hypermobile spinal segments while maintaining the healthy biomechanics of the spine. Numerous novel dynamic devices incorporate the temperature and moisture dependent material polycarbonate urethane (PCU) due to its mechanical properties and biocompatibility. In this study, standardized pure moment in vitro tests were carried out on human lumbar spines to evaluate the performance of a device containing PCU. An environmental chamber with controlled moisture and temperature was included in the setup to meet the requirements of testing under physiological conditions. Three test conditions were compared: (1) native spine, (2) dynamic instrumentation, and (3) dynamic instrumentation with decompression. The ranges of motion, centers of rotation, and relative pedicle screw motions were evaluated. The device displayed significant stiffening in flexion–extension, lateral bending, and axial rotation load directions. A reduction of the native range of motion diminished the stiffening effect along the spinal column and has the potential to reduce the risk of the onset of degeneration of an adjacent segment. In combination with decompression, the implant decreased the native range of motion for flexion–extension and skew bending, but not for lateral bending and axial rotation. Curve fittings using the sigmoid function were performed to parameterize all load-deflection curves in order to enhance accurate numerical model calibrations and comparisons. The device caused a shift of the center of rotation (COR) in the posterior and caudal direction during flexion–extension loading.</description><subject>Aged</subject><subject>Biomechanical Phenomena</subject><subject>Female</subject><subject>Humans</subject><subject>Lumbar Vertebrae - physiology</subject><subject>Male</subject><subject>Materials Testing</subject><subject>Mechanical Phenomena</subject><subject>Mechanical Tests</subject><subject>Middle Aged</subject><subject>Polycarboxylate Cement - chemistry</subject><subject>Range of Motion, Articular</subject><subject>Urethane</subject><issn>0148-0731</issn><issn>1528-8951</issn><issn>1528-8951</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kU1v1DAQhi0EokvhwBkJ-QiHFI8dO_YRlq9KBSptl6tlJ5PWVRIvdhYp_BH-Ll524TSa8TPvjN8h5DmwCwCQb-CiZnXNa_6ArEByXWkj4SFZMah1xRoBZ-RJzveMAeiaPSZnAkR50nJFfr8LccT2zk2hdQO9nOj3MKdIbzDPNPbU0a_xJw70_TK5MbR0swtT4Taz82EIv9wc4kQ3S55xLM1tTLuYSnG6pddxWFqXfJzcjHSbcC5DkH4pWQpFYjt1mOj13ZJDHOLt3_HrOHXhIJmfkke9GzI-O8Vzsv344Wb9ubr69uly_faqclzIuaq1krw3yNoOuELgKDgI5Vnve2caUI1X3HhZ_HHaa645dsZ4j6JruGqYOCevjrq7FH_sy6ftGHKLw1B2jftsOZfGMKXUAX19RNsUc07Y210Ko0uLBWYPd7BgT3co7MuT7N6P2P0n_xlfgBdHwOUR7X3cp2JrtkaWVbn4A1yEjUo</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Beckmann, Agnes</creator><creator>Nicolini, Luis Fernando</creator><creator>Grevenstein, David</creator><creator>Backes, Hermann</creator><creator>Oikonomidis, Stavros</creator><creator>Sobottke, Rolf</creator><creator>Kobbe, Philipp</creator><creator>Hildebrand, Frank</creator><creator>Stoffel, Marcus</creator><creator>Markert, Bernd</creator><creator>Siewe, Jan</creator><creator>Herren, Christian</creator><general>ASME</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20200101</creationdate><title>Biomechanical In Vitro Test of a Novel Dynamic Spinal Stabilization System Incorporating Polycarbonate Urethane Material Under Physiological Conditions</title><author>Beckmann, Agnes ; Nicolini, Luis Fernando ; Grevenstein, David ; Backes, Hermann ; Oikonomidis, Stavros ; Sobottke, Rolf ; Kobbe, Philipp ; Hildebrand, Frank ; Stoffel, Marcus ; Markert, Bernd ; Siewe, Jan ; Herren, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a235t-48652f9e0cd126e12e32136b0fbfa97167b629b5404a8b8282ed99bbe3d726703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aged</topic><topic>Biomechanical Phenomena</topic><topic>Female</topic><topic>Humans</topic><topic>Lumbar Vertebrae - physiology</topic><topic>Male</topic><topic>Materials Testing</topic><topic>Mechanical Phenomena</topic><topic>Mechanical Tests</topic><topic>Middle Aged</topic><topic>Polycarboxylate Cement - chemistry</topic><topic>Range of Motion, Articular</topic><topic>Urethane</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beckmann, Agnes</creatorcontrib><creatorcontrib>Nicolini, Luis Fernando</creatorcontrib><creatorcontrib>Grevenstein, David</creatorcontrib><creatorcontrib>Backes, Hermann</creatorcontrib><creatorcontrib>Oikonomidis, Stavros</creatorcontrib><creatorcontrib>Sobottke, Rolf</creatorcontrib><creatorcontrib>Kobbe, Philipp</creatorcontrib><creatorcontrib>Hildebrand, Frank</creatorcontrib><creatorcontrib>Stoffel, Marcus</creatorcontrib><creatorcontrib>Markert, Bernd</creatorcontrib><creatorcontrib>Siewe, Jan</creatorcontrib><creatorcontrib>Herren, Christian</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomechanical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beckmann, Agnes</au><au>Nicolini, Luis Fernando</au><au>Grevenstein, David</au><au>Backes, Hermann</au><au>Oikonomidis, Stavros</au><au>Sobottke, Rolf</au><au>Kobbe, Philipp</au><au>Hildebrand, Frank</au><au>Stoffel, Marcus</au><au>Markert, Bernd</au><au>Siewe, Jan</au><au>Herren, Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biomechanical In Vitro Test of a Novel Dynamic Spinal Stabilization System Incorporating Polycarbonate Urethane Material Under Physiological Conditions</atitle><jtitle>Journal of biomechanical engineering</jtitle><stitle>J Biomech Eng</stitle><addtitle>J Biomech Eng</addtitle><date>2020-01-01</date><risdate>2020</risdate><volume>142</volume><issue>1</issue><issn>0148-0731</issn><issn>1528-8951</issn><eissn>1528-8951</eissn><abstract>Posterior dynamic stabilization systems (PDSS) were developed to provide stabilization to pathologic or hypermobile spinal segments while maintaining the healthy biomechanics of the spine. Numerous novel dynamic devices incorporate the temperature and moisture dependent material polycarbonate urethane (PCU) due to its mechanical properties and biocompatibility. In this study, standardized pure moment in vitro tests were carried out on human lumbar spines to evaluate the performance of a device containing PCU. An environmental chamber with controlled moisture and temperature was included in the setup to meet the requirements of testing under physiological conditions. Three test conditions were compared: (1) native spine, (2) dynamic instrumentation, and (3) dynamic instrumentation with decompression. The ranges of motion, centers of rotation, and relative pedicle screw motions were evaluated. The device displayed significant stiffening in flexion–extension, lateral bending, and axial rotation load directions. A reduction of the native range of motion diminished the stiffening effect along the spinal column and has the potential to reduce the risk of the onset of degeneration of an adjacent segment. In combination with decompression, the implant decreased the native range of motion for flexion–extension and skew bending, but not for lateral bending and axial rotation. Curve fittings using the sigmoid function were performed to parameterize all load-deflection curves in order to enhance accurate numerical model calibrations and comparisons. The device caused a shift of the center of rotation (COR) in the posterior and caudal direction during flexion–extension loading.</abstract><cop>United States</cop><pub>ASME</pub><pmid>31314885</pmid><doi>10.1115/1.4044242</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0148-0731 |
ispartof | Journal of biomechanical engineering, 2020-01, Vol.142 (1) |
issn | 0148-0731 1528-8951 1528-8951 |
language | eng |
recordid | cdi_proquest_miscellaneous_2259906660 |
source | MEDLINE; ASME Transactions Journals (Current); Alma/SFX Local Collection |
subjects | Aged Biomechanical Phenomena Female Humans Lumbar Vertebrae - physiology Male Materials Testing Mechanical Phenomena Mechanical Tests Middle Aged Polycarboxylate Cement - chemistry Range of Motion, Articular Urethane |
title | Biomechanical In Vitro Test of a Novel Dynamic Spinal Stabilization System Incorporating Polycarbonate Urethane Material Under Physiological Conditions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T06%3A17%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biomechanical%20In%20Vitro%20Test%20of%20a%20Novel%20Dynamic%20Spinal%20Stabilization%20System%20Incorporating%20Polycarbonate%20Urethane%20Material%20Under%20Physiological%20Conditions&rft.jtitle=Journal%20of%20biomechanical%20engineering&rft.au=Beckmann,%20Agnes&rft.date=2020-01-01&rft.volume=142&rft.issue=1&rft.issn=0148-0731&rft.eissn=1528-8951&rft_id=info:doi/10.1115/1.4044242&rft_dat=%3Cproquest_cross%3E2259906660%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259906660&rft_id=info:pmid/31314885&rfr_iscdi=true |