Convolutional Neural Network of Atomic Surface Structures To Predict Binding Energies for High-Throughput Screening of Catalysts

High-throughput screening of catalysts can be performed using density functional theory calculations to predict catalytic properties, often correlated with adsorbate binding energies. However, more complete investigations would require an order of 2 more calculations compared to the current approach...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry letters 2019-08, Vol.10 (15), p.4401-4408
Hauptverfasser: Back, Seoin, Yoon, Junwoong, Tian, Nianhan, Zhong, Wen, Tran, Kevin, Ulissi, Zachary W
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4408
container_issue 15
container_start_page 4401
container_title The journal of physical chemistry letters
container_volume 10
creator Back, Seoin
Yoon, Junwoong
Tian, Nianhan
Zhong, Wen
Tran, Kevin
Ulissi, Zachary W
description High-throughput screening of catalysts can be performed using density functional theory calculations to predict catalytic properties, often correlated with adsorbate binding energies. However, more complete investigations would require an order of 2 more calculations compared to the current approach, making the computational cost a bottleneck. Recently developed machine-learning methods have been demonstrated to predict these properties from hand-crafted features but have struggled to scale to large composition spaces or complex active sites. Here, we present an application of a deep-learning convolutional neural network of atomic surface structures using atomic and Voronoi polyhedra-based neighbor information. The model effectively learns the most important surface features to predict binding energies. Our method predicts CO and H binding energies after training with 12 000 data for each adsorbate with a mean absolute error of 0.15 eV for a diverse chemical space. Our method is also capable of creating saliency maps that determine atomic contributions to binding energies.
doi_str_mv 10.1021/acs.jpclett.9b01428
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2259367049</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2259367049</sourcerecordid><originalsourceid>FETCH-LOGICAL-a411t-7a99d797859424c3d6bbd83265bc598ee9202ad442227c92e7a19ba26d9bf7f53</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EgvL4AiTkJZsU23HieFkqXhICpJZ15DiT1iWNix8gdnw6oS2IFasZac69Ix2ETikZUsLohdJ-uFjpFkIYyopQzoodNKCSF4mgRbb7Zz9Ah94vCMklKcQ-OkhpSknG0wH6HNvuzbYxGNupFj9AdOsR3q17wbbBo2CXRuNJdI3SgCfBRR2iA4-nFj85qI0O-NJ0telm-KoDNzP9rbEO35rZPJnOnY2z-SoGPNEOoPvG-tqxCqr98MEfo71GtR5OtvMIPV9fTce3yf3jzd14dJ8oTmlIhJKyFlIUmeSM67TOq6ouUpZnlc5kASAZYarmnDEmtGQgFJWVYnktq0Y0WXqEzje9K2dfI_hQLo3X0LaqAxt9yVgm01wQLns03aDaWe8dNOXKmaVyHyUl5bf6sldfbtWXW_V96mz7IFZLqH8zP6574GIDrNM2ul64_7fyC1wYlJA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259367049</pqid></control><display><type>article</type><title>Convolutional Neural Network of Atomic Surface Structures To Predict Binding Energies for High-Throughput Screening of Catalysts</title><source>ACS Publications</source><creator>Back, Seoin ; Yoon, Junwoong ; Tian, Nianhan ; Zhong, Wen ; Tran, Kevin ; Ulissi, Zachary W</creator><creatorcontrib>Back, Seoin ; Yoon, Junwoong ; Tian, Nianhan ; Zhong, Wen ; Tran, Kevin ; Ulissi, Zachary W</creatorcontrib><description>High-throughput screening of catalysts can be performed using density functional theory calculations to predict catalytic properties, often correlated with adsorbate binding energies. However, more complete investigations would require an order of 2 more calculations compared to the current approach, making the computational cost a bottleneck. Recently developed machine-learning methods have been demonstrated to predict these properties from hand-crafted features but have struggled to scale to large composition spaces or complex active sites. Here, we present an application of a deep-learning convolutional neural network of atomic surface structures using atomic and Voronoi polyhedra-based neighbor information. The model effectively learns the most important surface features to predict binding energies. Our method predicts CO and H binding energies after training with 12 000 data for each adsorbate with a mean absolute error of 0.15 eV for a diverse chemical space. Our method is also capable of creating saliency maps that determine atomic contributions to binding energies.</description><identifier>ISSN: 1948-7185</identifier><identifier>EISSN: 1948-7185</identifier><identifier>DOI: 10.1021/acs.jpclett.9b01428</identifier><identifier>PMID: 31310543</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>The journal of physical chemistry letters, 2019-08, Vol.10 (15), p.4401-4408</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a411t-7a99d797859424c3d6bbd83265bc598ee9202ad442227c92e7a19ba26d9bf7f53</citedby><cites>FETCH-LOGICAL-a411t-7a99d797859424c3d6bbd83265bc598ee9202ad442227c92e7a19ba26d9bf7f53</cites><orcidid>0000-0002-9401-4918 ; 0000-0003-4682-0621</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpclett.9b01428$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpclett.9b01428$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31310543$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Back, Seoin</creatorcontrib><creatorcontrib>Yoon, Junwoong</creatorcontrib><creatorcontrib>Tian, Nianhan</creatorcontrib><creatorcontrib>Zhong, Wen</creatorcontrib><creatorcontrib>Tran, Kevin</creatorcontrib><creatorcontrib>Ulissi, Zachary W</creatorcontrib><title>Convolutional Neural Network of Atomic Surface Structures To Predict Binding Energies for High-Throughput Screening of Catalysts</title><title>The journal of physical chemistry letters</title><addtitle>J. Phys. Chem. Lett</addtitle><description>High-throughput screening of catalysts can be performed using density functional theory calculations to predict catalytic properties, often correlated with adsorbate binding energies. However, more complete investigations would require an order of 2 more calculations compared to the current approach, making the computational cost a bottleneck. Recently developed machine-learning methods have been demonstrated to predict these properties from hand-crafted features but have struggled to scale to large composition spaces or complex active sites. Here, we present an application of a deep-learning convolutional neural network of atomic surface structures using atomic and Voronoi polyhedra-based neighbor information. The model effectively learns the most important surface features to predict binding energies. Our method predicts CO and H binding energies after training with 12 000 data for each adsorbate with a mean absolute error of 0.15 eV for a diverse chemical space. Our method is also capable of creating saliency maps that determine atomic contributions to binding energies.</description><issn>1948-7185</issn><issn>1948-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EgvL4AiTkJZsU23HieFkqXhICpJZ15DiT1iWNix8gdnw6oS2IFasZac69Ix2ETikZUsLohdJ-uFjpFkIYyopQzoodNKCSF4mgRbb7Zz9Ah94vCMklKcQ-OkhpSknG0wH6HNvuzbYxGNupFj9AdOsR3q17wbbBo2CXRuNJdI3SgCfBRR2iA4-nFj85qI0O-NJ0telm-KoDNzP9rbEO35rZPJnOnY2z-SoGPNEOoPvG-tqxCqr98MEfo71GtR5OtvMIPV9fTce3yf3jzd14dJ8oTmlIhJKyFlIUmeSM67TOq6ouUpZnlc5kASAZYarmnDEmtGQgFJWVYnktq0Y0WXqEzje9K2dfI_hQLo3X0LaqAxt9yVgm01wQLns03aDaWe8dNOXKmaVyHyUl5bf6sldfbtWXW_V96mz7IFZLqH8zP6574GIDrNM2ul64_7fyC1wYlJA</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Back, Seoin</creator><creator>Yoon, Junwoong</creator><creator>Tian, Nianhan</creator><creator>Zhong, Wen</creator><creator>Tran, Kevin</creator><creator>Ulissi, Zachary W</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9401-4918</orcidid><orcidid>https://orcid.org/0000-0003-4682-0621</orcidid></search><sort><creationdate>20190801</creationdate><title>Convolutional Neural Network of Atomic Surface Structures To Predict Binding Energies for High-Throughput Screening of Catalysts</title><author>Back, Seoin ; Yoon, Junwoong ; Tian, Nianhan ; Zhong, Wen ; Tran, Kevin ; Ulissi, Zachary W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a411t-7a99d797859424c3d6bbd83265bc598ee9202ad442227c92e7a19ba26d9bf7f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Back, Seoin</creatorcontrib><creatorcontrib>Yoon, Junwoong</creatorcontrib><creatorcontrib>Tian, Nianhan</creatorcontrib><creatorcontrib>Zhong, Wen</creatorcontrib><creatorcontrib>Tran, Kevin</creatorcontrib><creatorcontrib>Ulissi, Zachary W</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Back, Seoin</au><au>Yoon, Junwoong</au><au>Tian, Nianhan</au><au>Zhong, Wen</au><au>Tran, Kevin</au><au>Ulissi, Zachary W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convolutional Neural Network of Atomic Surface Structures To Predict Binding Energies for High-Throughput Screening of Catalysts</atitle><jtitle>The journal of physical chemistry letters</jtitle><addtitle>J. Phys. Chem. Lett</addtitle><date>2019-08-01</date><risdate>2019</risdate><volume>10</volume><issue>15</issue><spage>4401</spage><epage>4408</epage><pages>4401-4408</pages><issn>1948-7185</issn><eissn>1948-7185</eissn><abstract>High-throughput screening of catalysts can be performed using density functional theory calculations to predict catalytic properties, often correlated with adsorbate binding energies. However, more complete investigations would require an order of 2 more calculations compared to the current approach, making the computational cost a bottleneck. Recently developed machine-learning methods have been demonstrated to predict these properties from hand-crafted features but have struggled to scale to large composition spaces or complex active sites. Here, we present an application of a deep-learning convolutional neural network of atomic surface structures using atomic and Voronoi polyhedra-based neighbor information. The model effectively learns the most important surface features to predict binding energies. Our method predicts CO and H binding energies after training with 12 000 data for each adsorbate with a mean absolute error of 0.15 eV for a diverse chemical space. Our method is also capable of creating saliency maps that determine atomic contributions to binding energies.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31310543</pmid><doi>10.1021/acs.jpclett.9b01428</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-9401-4918</orcidid><orcidid>https://orcid.org/0000-0003-4682-0621</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1948-7185
ispartof The journal of physical chemistry letters, 2019-08, Vol.10 (15), p.4401-4408
issn 1948-7185
1948-7185
language eng
recordid cdi_proquest_miscellaneous_2259367049
source ACS Publications
title Convolutional Neural Network of Atomic Surface Structures To Predict Binding Energies for High-Throughput Screening of Catalysts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A56%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convolutional%20Neural%20Network%20of%20Atomic%20Surface%20Structures%20To%20Predict%20Binding%20Energies%20for%20High-Throughput%20Screening%20of%20Catalysts&rft.jtitle=The%20journal%20of%20physical%20chemistry%20letters&rft.au=Back,%20Seoin&rft.date=2019-08-01&rft.volume=10&rft.issue=15&rft.spage=4401&rft.epage=4408&rft.pages=4401-4408&rft.issn=1948-7185&rft.eissn=1948-7185&rft_id=info:doi/10.1021/acs.jpclett.9b01428&rft_dat=%3Cproquest_cross%3E2259367049%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259367049&rft_id=info:pmid/31310543&rfr_iscdi=true