Multiparametric MRI and Coregistered Histology Identify Tumor Habitats in Breast Cancer Mouse Models

It is well-recognized that solid tumors are genomically, anatomically, and physiologically heterogeneous. In general, more heterogeneous tumors have poorer outcomes, likely due to the increased probability of harboring therapy-resistant cells and regions. It is hypothesized that the genomic and phys...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancer research (Chicago, Ill.) Ill.), 2019-08, Vol.79 (15), p.3952-3964
Hauptverfasser: Jardim-Perassi, Bruna V, Huang, Suning, Dominguez-Viqueira, William, Poleszczuk, Jan, Budzevich, Mikalai M, Abdalah, Mahmoud A, Pillai, Smitha R, Ruiz, Epifanio, Bui, Marilyn M, Zuccari, Debora A P C, Gillies, Robert J, Martinez, Gary V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3964
container_issue 15
container_start_page 3952
container_title Cancer research (Chicago, Ill.)
container_volume 79
creator Jardim-Perassi, Bruna V
Huang, Suning
Dominguez-Viqueira, William
Poleszczuk, Jan
Budzevich, Mikalai M
Abdalah, Mahmoud A
Pillai, Smitha R
Ruiz, Epifanio
Bui, Marilyn M
Zuccari, Debora A P C
Gillies, Robert J
Martinez, Gary V
description It is well-recognized that solid tumors are genomically, anatomically, and physiologically heterogeneous. In general, more heterogeneous tumors have poorer outcomes, likely due to the increased probability of harboring therapy-resistant cells and regions. It is hypothesized that the genomic and physiologic heterogeneity are related, because physiologically distinct regions will exert variable selection pressures leading to the outgrowth of clones with variable genomic/proteomic profiles. To investigate this, methods must be in place to interrogate and define, at the microscopic scale, the cytotypes that exist within physiologically distinct subregions ("habitats") that are present at mesoscopic scales. MRI provides a noninvasive approach to interrogate physiologically distinct local environments, due to the biophysical principles that govern MRI signal generation. Here, we interrogate different physiologic parameters, such as perfusion, cell density, and edema, using multiparametric MRI (mpMRI). Signals from six different acquisition schema were combined voxel-by-voxel into four clusters identified using a Gaussian mixture model. These were compared with histologic and IHC characterizations of sections that were coregistered using MRI-guided 3D printed tumor molds. Specifically, we identified a specific set of MRI parameters to classify viable-normoxic, viable-hypoxic, nonviable-hypoxic, and nonviable-normoxic tissue types within orthotopic 4T1 and MDA-MB-231 breast tumors. This is the first coregistered study to show that mpMRI can be used to define physiologically distinct tumor habitats within breast tumor models. SIGNIFICANCE: This study demonstrates that noninvasive imaging metrics can be used to distinguish subregions within heterogeneous tumors with histopathologic correlation.
doi_str_mv 10.1158/0008-5472.CAN-19-0213
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2257718850</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2257718850</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-762dc8aa8c2ca23304f08451e541e80043b25ef1f9aa46e48b66732ee9d1d26a3</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EoqXwCSAv2aT4mbjLEgGt1IKEytpy4klllEexnUX_nkQtbOYh3Tt3dBC6p2ROqVRPhBCVSJGxeb58T-giIYzyCzSlkqskE0Jeoum_ZoJuQvgeVkmJvEYTTqlKGWdTZLd9Hd3BeNNA9K7E2881Nq3Feedh70IEDxavhqGru_0Rry200VVHvOubzuOVKVw0MWDX4mcPJkScm7YEj7ddH2CoFupwi64qUwe4O_cZ-np92eWrZPPxts6Xm6SULI1JljJbKmNUyUrDOCeiIkpIClJQUIQIXjAJFa0WxogUhCrSNOMMYGGpZanhM_R4unvw3U8PIerGhRLq2rQwvKMZk1lGlZJkkMqTtPRdCB4qffCuMf6oKdEjYD3C0yM8PQDWdKFHwIPv4RzRFw3Yf9cfUf4LDYF2nA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2257718850</pqid></control><display><type>article</type><title>Multiparametric MRI and Coregistered Histology Identify Tumor Habitats in Breast Cancer Mouse Models</title><source>MEDLINE</source><source>American Association for Cancer Research</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Jardim-Perassi, Bruna V ; Huang, Suning ; Dominguez-Viqueira, William ; Poleszczuk, Jan ; Budzevich, Mikalai M ; Abdalah, Mahmoud A ; Pillai, Smitha R ; Ruiz, Epifanio ; Bui, Marilyn M ; Zuccari, Debora A P C ; Gillies, Robert J ; Martinez, Gary V</creator><creatorcontrib>Jardim-Perassi, Bruna V ; Huang, Suning ; Dominguez-Viqueira, William ; Poleszczuk, Jan ; Budzevich, Mikalai M ; Abdalah, Mahmoud A ; Pillai, Smitha R ; Ruiz, Epifanio ; Bui, Marilyn M ; Zuccari, Debora A P C ; Gillies, Robert J ; Martinez, Gary V</creatorcontrib><description>It is well-recognized that solid tumors are genomically, anatomically, and physiologically heterogeneous. In general, more heterogeneous tumors have poorer outcomes, likely due to the increased probability of harboring therapy-resistant cells and regions. It is hypothesized that the genomic and physiologic heterogeneity are related, because physiologically distinct regions will exert variable selection pressures leading to the outgrowth of clones with variable genomic/proteomic profiles. To investigate this, methods must be in place to interrogate and define, at the microscopic scale, the cytotypes that exist within physiologically distinct subregions ("habitats") that are present at mesoscopic scales. MRI provides a noninvasive approach to interrogate physiologically distinct local environments, due to the biophysical principles that govern MRI signal generation. Here, we interrogate different physiologic parameters, such as perfusion, cell density, and edema, using multiparametric MRI (mpMRI). Signals from six different acquisition schema were combined voxel-by-voxel into four clusters identified using a Gaussian mixture model. These were compared with histologic and IHC characterizations of sections that were coregistered using MRI-guided 3D printed tumor molds. Specifically, we identified a specific set of MRI parameters to classify viable-normoxic, viable-hypoxic, nonviable-hypoxic, and nonviable-normoxic tissue types within orthotopic 4T1 and MDA-MB-231 breast tumors. This is the first coregistered study to show that mpMRI can be used to define physiologically distinct tumor habitats within breast tumor models. SIGNIFICANCE: This study demonstrates that noninvasive imaging metrics can be used to distinguish subregions within heterogeneous tumors with histopathologic correlation.</description><identifier>ISSN: 0008-5472</identifier><identifier>EISSN: 1538-7445</identifier><identifier>DOI: 10.1158/0008-5472.CAN-19-0213</identifier><identifier>PMID: 31186232</identifier><language>eng</language><publisher>United States</publisher><subject>Animals ; Breast Neoplasms - diagnostic imaging ; Disease Models, Animal ; Female ; Humans ; Mice ; Multiparametric Magnetic Resonance Imaging - methods ; Proteomics - methods</subject><ispartof>Cancer research (Chicago, Ill.), 2019-08, Vol.79 (15), p.3952-3964</ispartof><rights>2019 American Association for Cancer Research.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-762dc8aa8c2ca23304f08451e541e80043b25ef1f9aa46e48b66732ee9d1d26a3</citedby><cites>FETCH-LOGICAL-c526t-762dc8aa8c2ca23304f08451e541e80043b25ef1f9aa46e48b66732ee9d1d26a3</cites><orcidid>0000-0001-8758-7200 ; 0000-0002-2197-3931 ; 0000-0002-8888-7747</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3343,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31186232$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jardim-Perassi, Bruna V</creatorcontrib><creatorcontrib>Huang, Suning</creatorcontrib><creatorcontrib>Dominguez-Viqueira, William</creatorcontrib><creatorcontrib>Poleszczuk, Jan</creatorcontrib><creatorcontrib>Budzevich, Mikalai M</creatorcontrib><creatorcontrib>Abdalah, Mahmoud A</creatorcontrib><creatorcontrib>Pillai, Smitha R</creatorcontrib><creatorcontrib>Ruiz, Epifanio</creatorcontrib><creatorcontrib>Bui, Marilyn M</creatorcontrib><creatorcontrib>Zuccari, Debora A P C</creatorcontrib><creatorcontrib>Gillies, Robert J</creatorcontrib><creatorcontrib>Martinez, Gary V</creatorcontrib><title>Multiparametric MRI and Coregistered Histology Identify Tumor Habitats in Breast Cancer Mouse Models</title><title>Cancer research (Chicago, Ill.)</title><addtitle>Cancer Res</addtitle><description>It is well-recognized that solid tumors are genomically, anatomically, and physiologically heterogeneous. In general, more heterogeneous tumors have poorer outcomes, likely due to the increased probability of harboring therapy-resistant cells and regions. It is hypothesized that the genomic and physiologic heterogeneity are related, because physiologically distinct regions will exert variable selection pressures leading to the outgrowth of clones with variable genomic/proteomic profiles. To investigate this, methods must be in place to interrogate and define, at the microscopic scale, the cytotypes that exist within physiologically distinct subregions ("habitats") that are present at mesoscopic scales. MRI provides a noninvasive approach to interrogate physiologically distinct local environments, due to the biophysical principles that govern MRI signal generation. Here, we interrogate different physiologic parameters, such as perfusion, cell density, and edema, using multiparametric MRI (mpMRI). Signals from six different acquisition schema were combined voxel-by-voxel into four clusters identified using a Gaussian mixture model. These were compared with histologic and IHC characterizations of sections that were coregistered using MRI-guided 3D printed tumor molds. Specifically, we identified a specific set of MRI parameters to classify viable-normoxic, viable-hypoxic, nonviable-hypoxic, and nonviable-normoxic tissue types within orthotopic 4T1 and MDA-MB-231 breast tumors. This is the first coregistered study to show that mpMRI can be used to define physiologically distinct tumor habitats within breast tumor models. SIGNIFICANCE: This study demonstrates that noninvasive imaging metrics can be used to distinguish subregions within heterogeneous tumors with histopathologic correlation.</description><subject>Animals</subject><subject>Breast Neoplasms - diagnostic imaging</subject><subject>Disease Models, Animal</subject><subject>Female</subject><subject>Humans</subject><subject>Mice</subject><subject>Multiparametric Magnetic Resonance Imaging - methods</subject><subject>Proteomics - methods</subject><issn>0008-5472</issn><issn>1538-7445</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kMtOwzAQRS0EoqXwCSAv2aT4mbjLEgGt1IKEytpy4klllEexnUX_nkQtbOYh3Tt3dBC6p2ROqVRPhBCVSJGxeb58T-giIYzyCzSlkqskE0Jeoum_ZoJuQvgeVkmJvEYTTqlKGWdTZLd9Hd3BeNNA9K7E2881Nq3Feedh70IEDxavhqGru_0Rry200VVHvOubzuOVKVw0MWDX4mcPJkScm7YEj7ddH2CoFupwi64qUwe4O_cZ-np92eWrZPPxts6Xm6SULI1JljJbKmNUyUrDOCeiIkpIClJQUIQIXjAJFa0WxogUhCrSNOMMYGGpZanhM_R4unvw3U8PIerGhRLq2rQwvKMZk1lGlZJkkMqTtPRdCB4qffCuMf6oKdEjYD3C0yM8PQDWdKFHwIPv4RzRFw3Yf9cfUf4LDYF2nA</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Jardim-Perassi, Bruna V</creator><creator>Huang, Suning</creator><creator>Dominguez-Viqueira, William</creator><creator>Poleszczuk, Jan</creator><creator>Budzevich, Mikalai M</creator><creator>Abdalah, Mahmoud A</creator><creator>Pillai, Smitha R</creator><creator>Ruiz, Epifanio</creator><creator>Bui, Marilyn M</creator><creator>Zuccari, Debora A P C</creator><creator>Gillies, Robert J</creator><creator>Martinez, Gary V</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8758-7200</orcidid><orcidid>https://orcid.org/0000-0002-2197-3931</orcidid><orcidid>https://orcid.org/0000-0002-8888-7747</orcidid></search><sort><creationdate>20190801</creationdate><title>Multiparametric MRI and Coregistered Histology Identify Tumor Habitats in Breast Cancer Mouse Models</title><author>Jardim-Perassi, Bruna V ; Huang, Suning ; Dominguez-Viqueira, William ; Poleszczuk, Jan ; Budzevich, Mikalai M ; Abdalah, Mahmoud A ; Pillai, Smitha R ; Ruiz, Epifanio ; Bui, Marilyn M ; Zuccari, Debora A P C ; Gillies, Robert J ; Martinez, Gary V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-762dc8aa8c2ca23304f08451e541e80043b25ef1f9aa46e48b66732ee9d1d26a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Animals</topic><topic>Breast Neoplasms - diagnostic imaging</topic><topic>Disease Models, Animal</topic><topic>Female</topic><topic>Humans</topic><topic>Mice</topic><topic>Multiparametric Magnetic Resonance Imaging - methods</topic><topic>Proteomics - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jardim-Perassi, Bruna V</creatorcontrib><creatorcontrib>Huang, Suning</creatorcontrib><creatorcontrib>Dominguez-Viqueira, William</creatorcontrib><creatorcontrib>Poleszczuk, Jan</creatorcontrib><creatorcontrib>Budzevich, Mikalai M</creatorcontrib><creatorcontrib>Abdalah, Mahmoud A</creatorcontrib><creatorcontrib>Pillai, Smitha R</creatorcontrib><creatorcontrib>Ruiz, Epifanio</creatorcontrib><creatorcontrib>Bui, Marilyn M</creatorcontrib><creatorcontrib>Zuccari, Debora A P C</creatorcontrib><creatorcontrib>Gillies, Robert J</creatorcontrib><creatorcontrib>Martinez, Gary V</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Cancer research (Chicago, Ill.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jardim-Perassi, Bruna V</au><au>Huang, Suning</au><au>Dominguez-Viqueira, William</au><au>Poleszczuk, Jan</au><au>Budzevich, Mikalai M</au><au>Abdalah, Mahmoud A</au><au>Pillai, Smitha R</au><au>Ruiz, Epifanio</au><au>Bui, Marilyn M</au><au>Zuccari, Debora A P C</au><au>Gillies, Robert J</au><au>Martinez, Gary V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiparametric MRI and Coregistered Histology Identify Tumor Habitats in Breast Cancer Mouse Models</atitle><jtitle>Cancer research (Chicago, Ill.)</jtitle><addtitle>Cancer Res</addtitle><date>2019-08-01</date><risdate>2019</risdate><volume>79</volume><issue>15</issue><spage>3952</spage><epage>3964</epage><pages>3952-3964</pages><issn>0008-5472</issn><eissn>1538-7445</eissn><abstract>It is well-recognized that solid tumors are genomically, anatomically, and physiologically heterogeneous. In general, more heterogeneous tumors have poorer outcomes, likely due to the increased probability of harboring therapy-resistant cells and regions. It is hypothesized that the genomic and physiologic heterogeneity are related, because physiologically distinct regions will exert variable selection pressures leading to the outgrowth of clones with variable genomic/proteomic profiles. To investigate this, methods must be in place to interrogate and define, at the microscopic scale, the cytotypes that exist within physiologically distinct subregions ("habitats") that are present at mesoscopic scales. MRI provides a noninvasive approach to interrogate physiologically distinct local environments, due to the biophysical principles that govern MRI signal generation. Here, we interrogate different physiologic parameters, such as perfusion, cell density, and edema, using multiparametric MRI (mpMRI). Signals from six different acquisition schema were combined voxel-by-voxel into four clusters identified using a Gaussian mixture model. These were compared with histologic and IHC characterizations of sections that were coregistered using MRI-guided 3D printed tumor molds. Specifically, we identified a specific set of MRI parameters to classify viable-normoxic, viable-hypoxic, nonviable-hypoxic, and nonviable-normoxic tissue types within orthotopic 4T1 and MDA-MB-231 breast tumors. This is the first coregistered study to show that mpMRI can be used to define physiologically distinct tumor habitats within breast tumor models. SIGNIFICANCE: This study demonstrates that noninvasive imaging metrics can be used to distinguish subregions within heterogeneous tumors with histopathologic correlation.</abstract><cop>United States</cop><pmid>31186232</pmid><doi>10.1158/0008-5472.CAN-19-0213</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-8758-7200</orcidid><orcidid>https://orcid.org/0000-0002-2197-3931</orcidid><orcidid>https://orcid.org/0000-0002-8888-7747</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0008-5472
ispartof Cancer research (Chicago, Ill.), 2019-08, Vol.79 (15), p.3952-3964
issn 0008-5472
1538-7445
language eng
recordid cdi_proquest_miscellaneous_2257718850
source MEDLINE; American Association for Cancer Research; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Animals
Breast Neoplasms - diagnostic imaging
Disease Models, Animal
Female
Humans
Mice
Multiparametric Magnetic Resonance Imaging - methods
Proteomics - methods
title Multiparametric MRI and Coregistered Histology Identify Tumor Habitats in Breast Cancer Mouse Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T00%3A23%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiparametric%20MRI%20and%20Coregistered%20Histology%20Identify%20Tumor%20Habitats%20in%20Breast%20Cancer%20Mouse%20Models&rft.jtitle=Cancer%20research%20(Chicago,%20Ill.)&rft.au=Jardim-Perassi,%20Bruna%20V&rft.date=2019-08-01&rft.volume=79&rft.issue=15&rft.spage=3952&rft.epage=3964&rft.pages=3952-3964&rft.issn=0008-5472&rft.eissn=1538-7445&rft_id=info:doi/10.1158/0008-5472.CAN-19-0213&rft_dat=%3Cproquest_cross%3E2257718850%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2257718850&rft_id=info:pmid/31186232&rfr_iscdi=true