Coherent Anti-Stokes–Stokes Raman Cross-Correlation Spectroscopy: Asymmetric Frequency Shifts in Hydrogen-Bonded Pyridine-Water Complexes

Hydrogen bonding is a vital molecular interaction for bio-molecular systems, yet deep understanding of its ways of creating various complexes requires extensive empirical testing. A hybrid femtosecond/picosecond coherent Raman spectroscopic technique is applied to study pyridine-water complexes. Bot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied spectroscopy 2019-09, Vol.73 (9), p.1099-1106
Hauptverfasser: Ariunbold, Gombojav O., Semon, Bryan, Nagpal, Supriya, Adhikari, Prakash
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1106
container_issue 9
container_start_page 1099
container_title Applied spectroscopy
container_volume 73
creator Ariunbold, Gombojav O.
Semon, Bryan
Nagpal, Supriya
Adhikari, Prakash
description Hydrogen bonding is a vital molecular interaction for bio-molecular systems, yet deep understanding of its ways of creating various complexes requires extensive empirical testing. A hybrid femtosecond/picosecond coherent Raman spectroscopic technique is applied to study pyridine-water complexes. Both the coherent Stokes and anti-Stokes Raman spectra are recorded simultaneously as the concentration of water in pyridine varied. A 3 ps and 10 cm−1 narrowband probe pulse enables us to observe well-resolved Raman spectra. The hydrogen bonding between pyridine and water forms the complexes that have altered vibrational frequencies. These red and blue shifts were observed to be uneven. This asymmetry was result of the generated background nonlinear optical processes of pyridine-water complexes. This asymmetry tends to disappear as probe pulse further delayed attaining background-free coherent Raman spectra. For better visualization, spectral analyses both traditional two-dimensional correlation spectroscopy and recent second-order correlation functions defined in frequency domain are employed. Recognized as a label-free and background-free technique, the coherent Raman spectroscopy, complemented with a known high-resolution spectroscopic correlation analysis, has potential in studying the hydrogen-bonded pyridine-water complexes. These complexes are of great biological importance both due to the ubiquitous nature of hydrogen bonds and due to the close resemblance to chemical bases in macro-biomolecules.
doi_str_mv 10.1177/0003702819857771
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2256105642</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0003702819857771</sage_id><sourcerecordid>2256105642</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-5ba40bb5a0cb31fe6150190d078653a6a361ffed47882f0d8ee153930a34ef483</originalsourceid><addsrcrecordid>eNp1UbtOxDAQtBAIjkdPhVzSGOw4jhO6I-IlIYE4EGXkJBswJHawfRLp6Cn5Q76EnA4okKj2MbOj3VmEdhk9YEzKQ0oplzRKWZYKKSVbQROWxZxwwekqmixgssA30Kb3T2MpMi7W0QZnUcZZKiboPbeP4MAEPDVBk1mwz-A_3z6WCb5RnTI4d9Z7klvnoFVBW4NnPVRh7Fa2H47w1A9dB8HpCp86eJmDqQY8e9RN8FgbfD7Uzj6AIcfW1FDj68HpWhsg9yqAw7nt-hZewW-jtUa1Hna-4xa6Oz25zc_J5dXZRT69JBXnMhBRqpiWpVC0KjlrIGGCsozWVKaJ4CpRPGFNA3Us0zRqaJ0CMMEzThWPoYlTvoX2l7q9s-OyPhSd9hW0rTJg576IIpEwKpI4Gql0Sa0WFjhoit7pTrmhYLRYvKD4-4JxZO9bfV52UP8O_Hg-EsiS4NUDFE927sx47f-CX0ujkQQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2256105642</pqid></control><display><type>article</type><title>Coherent Anti-Stokes–Stokes Raman Cross-Correlation Spectroscopy: Asymmetric Frequency Shifts in Hydrogen-Bonded Pyridine-Water Complexes</title><source>SAGE Complete A-Z List</source><creator>Ariunbold, Gombojav O. ; Semon, Bryan ; Nagpal, Supriya ; Adhikari, Prakash</creator><creatorcontrib>Ariunbold, Gombojav O. ; Semon, Bryan ; Nagpal, Supriya ; Adhikari, Prakash</creatorcontrib><description>Hydrogen bonding is a vital molecular interaction for bio-molecular systems, yet deep understanding of its ways of creating various complexes requires extensive empirical testing. A hybrid femtosecond/picosecond coherent Raman spectroscopic technique is applied to study pyridine-water complexes. Both the coherent Stokes and anti-Stokes Raman spectra are recorded simultaneously as the concentration of water in pyridine varied. A 3 ps and 10 cm−1 narrowband probe pulse enables us to observe well-resolved Raman spectra. The hydrogen bonding between pyridine and water forms the complexes that have altered vibrational frequencies. These red and blue shifts were observed to be uneven. This asymmetry was result of the generated background nonlinear optical processes of pyridine-water complexes. This asymmetry tends to disappear as probe pulse further delayed attaining background-free coherent Raman spectra. For better visualization, spectral analyses both traditional two-dimensional correlation spectroscopy and recent second-order correlation functions defined in frequency domain are employed. Recognized as a label-free and background-free technique, the coherent Raman spectroscopy, complemented with a known high-resolution spectroscopic correlation analysis, has potential in studying the hydrogen-bonded pyridine-water complexes. These complexes are of great biological importance both due to the ubiquitous nature of hydrogen bonds and due to the close resemblance to chemical bases in macro-biomolecules.</description><identifier>ISSN: 0003-7028</identifier><identifier>EISSN: 1943-3530</identifier><identifier>DOI: 10.1177/0003702819857771</identifier><identifier>PMID: 31293185</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><ispartof>Applied spectroscopy, 2019-09, Vol.73 (9), p.1099-1106</ispartof><rights>The Author(s) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-5ba40bb5a0cb31fe6150190d078653a6a361ffed47882f0d8ee153930a34ef483</citedby><cites>FETCH-LOGICAL-c337t-5ba40bb5a0cb31fe6150190d078653a6a361ffed47882f0d8ee153930a34ef483</cites><orcidid>0000-0003-0430-7256</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0003702819857771$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0003702819857771$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,777,781,21800,27905,27906,43602,43603</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31293185$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ariunbold, Gombojav O.</creatorcontrib><creatorcontrib>Semon, Bryan</creatorcontrib><creatorcontrib>Nagpal, Supriya</creatorcontrib><creatorcontrib>Adhikari, Prakash</creatorcontrib><title>Coherent Anti-Stokes–Stokes Raman Cross-Correlation Spectroscopy: Asymmetric Frequency Shifts in Hydrogen-Bonded Pyridine-Water Complexes</title><title>Applied spectroscopy</title><addtitle>Appl Spectrosc</addtitle><description>Hydrogen bonding is a vital molecular interaction for bio-molecular systems, yet deep understanding of its ways of creating various complexes requires extensive empirical testing. A hybrid femtosecond/picosecond coherent Raman spectroscopic technique is applied to study pyridine-water complexes. Both the coherent Stokes and anti-Stokes Raman spectra are recorded simultaneously as the concentration of water in pyridine varied. A 3 ps and 10 cm−1 narrowband probe pulse enables us to observe well-resolved Raman spectra. The hydrogen bonding between pyridine and water forms the complexes that have altered vibrational frequencies. These red and blue shifts were observed to be uneven. This asymmetry was result of the generated background nonlinear optical processes of pyridine-water complexes. This asymmetry tends to disappear as probe pulse further delayed attaining background-free coherent Raman spectra. For better visualization, spectral analyses both traditional two-dimensional correlation spectroscopy and recent second-order correlation functions defined in frequency domain are employed. Recognized as a label-free and background-free technique, the coherent Raman spectroscopy, complemented with a known high-resolution spectroscopic correlation analysis, has potential in studying the hydrogen-bonded pyridine-water complexes. These complexes are of great biological importance both due to the ubiquitous nature of hydrogen bonds and due to the close resemblance to chemical bases in macro-biomolecules.</description><issn>0003-7028</issn><issn>1943-3530</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1UbtOxDAQtBAIjkdPhVzSGOw4jhO6I-IlIYE4EGXkJBswJHawfRLp6Cn5Q76EnA4okKj2MbOj3VmEdhk9YEzKQ0oplzRKWZYKKSVbQROWxZxwwekqmixgssA30Kb3T2MpMi7W0QZnUcZZKiboPbeP4MAEPDVBk1mwz-A_3z6WCb5RnTI4d9Z7klvnoFVBW4NnPVRh7Fa2H47w1A9dB8HpCp86eJmDqQY8e9RN8FgbfD7Uzj6AIcfW1FDj68HpWhsg9yqAw7nt-hZewW-jtUa1Hna-4xa6Oz25zc_J5dXZRT69JBXnMhBRqpiWpVC0KjlrIGGCsozWVKaJ4CpRPGFNA3Us0zRqaJ0CMMEzThWPoYlTvoX2l7q9s-OyPhSd9hW0rTJg576IIpEwKpI4Gql0Sa0WFjhoit7pTrmhYLRYvKD4-4JxZO9bfV52UP8O_Hg-EsiS4NUDFE927sx47f-CX0ujkQQ</recordid><startdate>201909</startdate><enddate>201909</enddate><creator>Ariunbold, Gombojav O.</creator><creator>Semon, Bryan</creator><creator>Nagpal, Supriya</creator><creator>Adhikari, Prakash</creator><general>SAGE Publications</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0430-7256</orcidid></search><sort><creationdate>201909</creationdate><title>Coherent Anti-Stokes–Stokes Raman Cross-Correlation Spectroscopy: Asymmetric Frequency Shifts in Hydrogen-Bonded Pyridine-Water Complexes</title><author>Ariunbold, Gombojav O. ; Semon, Bryan ; Nagpal, Supriya ; Adhikari, Prakash</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-5ba40bb5a0cb31fe6150190d078653a6a361ffed47882f0d8ee153930a34ef483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ariunbold, Gombojav O.</creatorcontrib><creatorcontrib>Semon, Bryan</creatorcontrib><creatorcontrib>Nagpal, Supriya</creatorcontrib><creatorcontrib>Adhikari, Prakash</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Applied spectroscopy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ariunbold, Gombojav O.</au><au>Semon, Bryan</au><au>Nagpal, Supriya</au><au>Adhikari, Prakash</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coherent Anti-Stokes–Stokes Raman Cross-Correlation Spectroscopy: Asymmetric Frequency Shifts in Hydrogen-Bonded Pyridine-Water Complexes</atitle><jtitle>Applied spectroscopy</jtitle><addtitle>Appl Spectrosc</addtitle><date>2019-09</date><risdate>2019</risdate><volume>73</volume><issue>9</issue><spage>1099</spage><epage>1106</epage><pages>1099-1106</pages><issn>0003-7028</issn><eissn>1943-3530</eissn><abstract>Hydrogen bonding is a vital molecular interaction for bio-molecular systems, yet deep understanding of its ways of creating various complexes requires extensive empirical testing. A hybrid femtosecond/picosecond coherent Raman spectroscopic technique is applied to study pyridine-water complexes. Both the coherent Stokes and anti-Stokes Raman spectra are recorded simultaneously as the concentration of water in pyridine varied. A 3 ps and 10 cm−1 narrowband probe pulse enables us to observe well-resolved Raman spectra. The hydrogen bonding between pyridine and water forms the complexes that have altered vibrational frequencies. These red and blue shifts were observed to be uneven. This asymmetry was result of the generated background nonlinear optical processes of pyridine-water complexes. This asymmetry tends to disappear as probe pulse further delayed attaining background-free coherent Raman spectra. For better visualization, spectral analyses both traditional two-dimensional correlation spectroscopy and recent second-order correlation functions defined in frequency domain are employed. Recognized as a label-free and background-free technique, the coherent Raman spectroscopy, complemented with a known high-resolution spectroscopic correlation analysis, has potential in studying the hydrogen-bonded pyridine-water complexes. These complexes are of great biological importance both due to the ubiquitous nature of hydrogen bonds and due to the close resemblance to chemical bases in macro-biomolecules.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><pmid>31293185</pmid><doi>10.1177/0003702819857771</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-0430-7256</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-7028
ispartof Applied spectroscopy, 2019-09, Vol.73 (9), p.1099-1106
issn 0003-7028
1943-3530
language eng
recordid cdi_proquest_miscellaneous_2256105642
source SAGE Complete A-Z List
title Coherent Anti-Stokes–Stokes Raman Cross-Correlation Spectroscopy: Asymmetric Frequency Shifts in Hydrogen-Bonded Pyridine-Water Complexes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T13%3A25%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coherent%20Anti-Stokes%E2%80%93Stokes%20Raman%20Cross-Correlation%20Spectroscopy:%20Asymmetric%20Frequency%20Shifts%20in%20Hydrogen-Bonded%20Pyridine-Water%20Complexes&rft.jtitle=Applied%20spectroscopy&rft.au=Ariunbold,%20Gombojav%20O.&rft.date=2019-09&rft.volume=73&rft.issue=9&rft.spage=1099&rft.epage=1106&rft.pages=1099-1106&rft.issn=0003-7028&rft.eissn=1943-3530&rft_id=info:doi/10.1177/0003702819857771&rft_dat=%3Cproquest_cross%3E2256105642%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2256105642&rft_id=info:pmid/31293185&rft_sage_id=10.1177_0003702819857771&rfr_iscdi=true