QKI deficiency maintains glioma stem cell stemness by activating the SHH/GLI1 signaling pathway

Purpose Glioblastoma (GBM) stem cells (GSCs) have been found to be the main cause of malignant GBM progression. It has also been found that Quaking homolog (QKI ) plays a predominant role in driving GBM development. Here, we aimed to asses the role of QKI in maintaining GSC stemness and inducing the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cellular oncology (Dordrecht) 2019-12, Vol.42 (6), p.801-813
Hauptverfasser: Han, Bo, Wang, Ruijia, Chen, Yongjie, Meng, Xiangqi, Wu, Pengfei, Li, Ziwei, Duan, Chunbin, Li, Qingbin, Li, Yang, Zhao, Shihong, Jiang, Chuanlu, Cai, Jinquan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 813
container_issue 6
container_start_page 801
container_title Cellular oncology (Dordrecht)
container_volume 42
creator Han, Bo
Wang, Ruijia
Chen, Yongjie
Meng, Xiangqi
Wu, Pengfei
Li, Ziwei
Duan, Chunbin
Li, Qingbin
Li, Yang
Zhao, Shihong
Jiang, Chuanlu
Cai, Jinquan
description Purpose Glioblastoma (GBM) stem cells (GSCs) have been found to be the main cause of malignant GBM progression. It has also been found that Quaking homolog (QKI ) plays a predominant role in driving GBM development. Here, we aimed to asses the role of QKI in maintaining GSC stemness and inducing the invasiveness of GBM cells. Methods Public databases were used to assess the expression of QKI and its correlation with stemness markers in primary GBMs. The CRISPR-Cas9 technology was used to generate QK I knockout GBM cells, and RNA immunoprecipitation was used to assess QKI- GLI1 protein-mRNA interactions. In addition, in vitro and in vivo GBM cell proliferation, migration, xenografting and neurosphere formation assays were performed. Results Using public GBM databases, QKI was identified as a potential GSC regulator. We found that QKI could inhibit stem-like cell (SLC) stemness and prolong the survival of xenografted mice. Mechanistically, we found that QKI knockout increased the GLI Family Zinc Finger 1 ( GLI1 ) mRNA level, which is essential for maintaining the self-renewal ability of GSCs. In addition, we found that QKI knockout activated the Hedgehog signaling pathway via Tra-2 and GLI response element (TGE)-specific GLI1 mRNA disruption. Conclusion Our data indicate that upregulation of GLI1 induced by QKI deficiency maintains GSC stemness and enhances the invasiveness of GBM cells, thereby hinting at new options for the treatment of GBM.
doi_str_mv 10.1007/s13402-019-00463-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2256105641</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2256105641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-d7cb5932cd7f45ccaefe419b83bf0df7d585d8fe784dbaddfe6e4169e705f1173</originalsourceid><addsrcrecordid>eNp9kU1LAzEQhoMoKuof8CABL17W5mOT3T1K0bZYEFHPIZtMamQ_6mar7b83tbWCBwkhQ-aZd4Z5ETqn5JoSkg0C5SlhCaFFQkgqebLcQ8eMUZrwlMv9XczyI3QWwhsha4xKIQ_REaesiIccI_V4P8EWnDceGrPCtfZNH2_As8q3tcahhxobqKrvqIEQcLnC2vT-Q_e-meH-FfDTeDwYTScUBz9rdLX-nuv-9VOvTtGB01WAs-17gl7ubp-H42T6MJoMb6aJ4ZnoE5uZUhScGZu5VBijwUFKizLnpSPWZVbkwuYOsjy1pbbWgYx5WUBGhKM04yfoaqM779r3BYRe1T6sx9YNtIugGBOSEiFTGtHLP-hbu-ji2JHiVMblEiIixTaU6doQOnBq3vladytFiVo7oDYOqOiA-nZALWPRxVZ6UdZgdyU_-44A3wAhppoZdL-9_5H9AoWKkWU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2316007005</pqid></control><display><type>article</type><title>QKI deficiency maintains glioma stem cell stemness by activating the SHH/GLI1 signaling pathway</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Han, Bo ; Wang, Ruijia ; Chen, Yongjie ; Meng, Xiangqi ; Wu, Pengfei ; Li, Ziwei ; Duan, Chunbin ; Li, Qingbin ; Li, Yang ; Zhao, Shihong ; Jiang, Chuanlu ; Cai, Jinquan</creator><creatorcontrib>Han, Bo ; Wang, Ruijia ; Chen, Yongjie ; Meng, Xiangqi ; Wu, Pengfei ; Li, Ziwei ; Duan, Chunbin ; Li, Qingbin ; Li, Yang ; Zhao, Shihong ; Jiang, Chuanlu ; Cai, Jinquan</creatorcontrib><description>Purpose Glioblastoma (GBM) stem cells (GSCs) have been found to be the main cause of malignant GBM progression. It has also been found that Quaking homolog (QKI ) plays a predominant role in driving GBM development. Here, we aimed to asses the role of QKI in maintaining GSC stemness and inducing the invasiveness of GBM cells. Methods Public databases were used to assess the expression of QKI and its correlation with stemness markers in primary GBMs. The CRISPR-Cas9 technology was used to generate QK I knockout GBM cells, and RNA immunoprecipitation was used to assess QKI- GLI1 protein-mRNA interactions. In addition, in vitro and in vivo GBM cell proliferation, migration, xenografting and neurosphere formation assays were performed. Results Using public GBM databases, QKI was identified as a potential GSC regulator. We found that QKI could inhibit stem-like cell (SLC) stemness and prolong the survival of xenografted mice. Mechanistically, we found that QKI knockout increased the GLI Family Zinc Finger 1 ( GLI1 ) mRNA level, which is essential for maintaining the self-renewal ability of GSCs. In addition, we found that QKI knockout activated the Hedgehog signaling pathway via Tra-2 and GLI response element (TGE)-specific GLI1 mRNA disruption. Conclusion Our data indicate that upregulation of GLI1 induced by QKI deficiency maintains GSC stemness and enhances the invasiveness of GBM cells, thereby hinting at new options for the treatment of GBM.</description><identifier>ISSN: 2211-3428</identifier><identifier>EISSN: 2211-3436</identifier><identifier>DOI: 10.1007/s13402-019-00463-x</identifier><identifier>PMID: 31292920</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Aged ; Animals ; Biomedical and Life Sciences ; Biomedicine ; Brain Neoplasms - genetics ; Brain Neoplasms - metabolism ; Brain Neoplasms - pathology ; Cancer Research ; Cell Line, Tumor ; Cell migration ; Cell Proliferation ; Cell self-renewal ; CRISPR ; Female ; Gene Expression Regulation, Neoplastic ; Gli1 protein ; Glioblastoma ; Glioma - genetics ; Glioma - metabolism ; Glioma - pathology ; Glioma cells ; Hedgehog protein ; Hedgehog Proteins - metabolism ; Humans ; Immunoprecipitation ; Invasiveness ; Male ; Mice, Inbred BALB C ; Mice, Nude ; Middle Aged ; Models, Biological ; mRNA ; Neoplasm Invasiveness ; Neoplastic Stem Cells - metabolism ; Neoplastic Stem Cells - pathology ; Oncology ; Original Paper ; Pathology ; Phenotype ; Phosphorylation ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; RNA-Binding Proteins - genetics ; RNA-Binding Proteins - metabolism ; Signal Transduction ; Stem cell transplantation ; Stem cells ; Survival Analysis ; Xenografts ; Zinc Finger Protein GLI1 - metabolism ; Zinc finger proteins</subject><ispartof>Cellular oncology (Dordrecht), 2019-12, Vol.42 (6), p.801-813</ispartof><rights>International Society for Cellular Oncology 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-d7cb5932cd7f45ccaefe419b83bf0df7d585d8fe784dbaddfe6e4169e705f1173</citedby><cites>FETCH-LOGICAL-c375t-d7cb5932cd7f45ccaefe419b83bf0df7d585d8fe784dbaddfe6e4169e705f1173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13402-019-00463-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13402-019-00463-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27926,27927,41490,42559,51321</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31292920$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Han, Bo</creatorcontrib><creatorcontrib>Wang, Ruijia</creatorcontrib><creatorcontrib>Chen, Yongjie</creatorcontrib><creatorcontrib>Meng, Xiangqi</creatorcontrib><creatorcontrib>Wu, Pengfei</creatorcontrib><creatorcontrib>Li, Ziwei</creatorcontrib><creatorcontrib>Duan, Chunbin</creatorcontrib><creatorcontrib>Li, Qingbin</creatorcontrib><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Zhao, Shihong</creatorcontrib><creatorcontrib>Jiang, Chuanlu</creatorcontrib><creatorcontrib>Cai, Jinquan</creatorcontrib><title>QKI deficiency maintains glioma stem cell stemness by activating the SHH/GLI1 signaling pathway</title><title>Cellular oncology (Dordrecht)</title><addtitle>Cell Oncol</addtitle><addtitle>Cell Oncol (Dordr)</addtitle><description>Purpose Glioblastoma (GBM) stem cells (GSCs) have been found to be the main cause of malignant GBM progression. It has also been found that Quaking homolog (QKI ) plays a predominant role in driving GBM development. Here, we aimed to asses the role of QKI in maintaining GSC stemness and inducing the invasiveness of GBM cells. Methods Public databases were used to assess the expression of QKI and its correlation with stemness markers in primary GBMs. The CRISPR-Cas9 technology was used to generate QK I knockout GBM cells, and RNA immunoprecipitation was used to assess QKI- GLI1 protein-mRNA interactions. In addition, in vitro and in vivo GBM cell proliferation, migration, xenografting and neurosphere formation assays were performed. Results Using public GBM databases, QKI was identified as a potential GSC regulator. We found that QKI could inhibit stem-like cell (SLC) stemness and prolong the survival of xenografted mice. Mechanistically, we found that QKI knockout increased the GLI Family Zinc Finger 1 ( GLI1 ) mRNA level, which is essential for maintaining the self-renewal ability of GSCs. In addition, we found that QKI knockout activated the Hedgehog signaling pathway via Tra-2 and GLI response element (TGE)-specific GLI1 mRNA disruption. Conclusion Our data indicate that upregulation of GLI1 induced by QKI deficiency maintains GSC stemness and enhances the invasiveness of GBM cells, thereby hinting at new options for the treatment of GBM.</description><subject>Aged</subject><subject>Animals</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Brain Neoplasms - genetics</subject><subject>Brain Neoplasms - metabolism</subject><subject>Brain Neoplasms - pathology</subject><subject>Cancer Research</subject><subject>Cell Line, Tumor</subject><subject>Cell migration</subject><subject>Cell Proliferation</subject><subject>Cell self-renewal</subject><subject>CRISPR</subject><subject>Female</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>Gli1 protein</subject><subject>Glioblastoma</subject><subject>Glioma - genetics</subject><subject>Glioma - metabolism</subject><subject>Glioma - pathology</subject><subject>Glioma cells</subject><subject>Hedgehog protein</subject><subject>Hedgehog Proteins - metabolism</subject><subject>Humans</subject><subject>Immunoprecipitation</subject><subject>Invasiveness</subject><subject>Male</subject><subject>Mice, Inbred BALB C</subject><subject>Mice, Nude</subject><subject>Middle Aged</subject><subject>Models, Biological</subject><subject>mRNA</subject><subject>Neoplasm Invasiveness</subject><subject>Neoplastic Stem Cells - metabolism</subject><subject>Neoplastic Stem Cells - pathology</subject><subject>Oncology</subject><subject>Original Paper</subject><subject>Pathology</subject><subject>Phenotype</subject><subject>Phosphorylation</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>RNA-Binding Proteins - genetics</subject><subject>RNA-Binding Proteins - metabolism</subject><subject>Signal Transduction</subject><subject>Stem cell transplantation</subject><subject>Stem cells</subject><subject>Survival Analysis</subject><subject>Xenografts</subject><subject>Zinc Finger Protein GLI1 - metabolism</subject><subject>Zinc finger proteins</subject><issn>2211-3428</issn><issn>2211-3436</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU1LAzEQhoMoKuof8CABL17W5mOT3T1K0bZYEFHPIZtMamQ_6mar7b83tbWCBwkhQ-aZd4Z5ETqn5JoSkg0C5SlhCaFFQkgqebLcQ8eMUZrwlMv9XczyI3QWwhsha4xKIQ_REaesiIccI_V4P8EWnDceGrPCtfZNH2_As8q3tcahhxobqKrvqIEQcLnC2vT-Q_e-meH-FfDTeDwYTScUBz9rdLX-nuv-9VOvTtGB01WAs-17gl7ubp-H42T6MJoMb6aJ4ZnoE5uZUhScGZu5VBijwUFKizLnpSPWZVbkwuYOsjy1pbbWgYx5WUBGhKM04yfoaqM779r3BYRe1T6sx9YNtIugGBOSEiFTGtHLP-hbu-ji2JHiVMblEiIixTaU6doQOnBq3vladytFiVo7oDYOqOiA-nZALWPRxVZ6UdZgdyU_-44A3wAhppoZdL-9_5H9AoWKkWU</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Han, Bo</creator><creator>Wang, Ruijia</creator><creator>Chen, Yongjie</creator><creator>Meng, Xiangqi</creator><creator>Wu, Pengfei</creator><creator>Li, Ziwei</creator><creator>Duan, Chunbin</creator><creator>Li, Qingbin</creator><creator>Li, Yang</creator><creator>Zhao, Shihong</creator><creator>Jiang, Chuanlu</creator><creator>Cai, Jinquan</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20191201</creationdate><title>QKI deficiency maintains glioma stem cell stemness by activating the SHH/GLI1 signaling pathway</title><author>Han, Bo ; Wang, Ruijia ; Chen, Yongjie ; Meng, Xiangqi ; Wu, Pengfei ; Li, Ziwei ; Duan, Chunbin ; Li, Qingbin ; Li, Yang ; Zhao, Shihong ; Jiang, Chuanlu ; Cai, Jinquan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-d7cb5932cd7f45ccaefe419b83bf0df7d585d8fe784dbaddfe6e4169e705f1173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aged</topic><topic>Animals</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Brain Neoplasms - genetics</topic><topic>Brain Neoplasms - metabolism</topic><topic>Brain Neoplasms - pathology</topic><topic>Cancer Research</topic><topic>Cell Line, Tumor</topic><topic>Cell migration</topic><topic>Cell Proliferation</topic><topic>Cell self-renewal</topic><topic>CRISPR</topic><topic>Female</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>Gli1 protein</topic><topic>Glioblastoma</topic><topic>Glioma - genetics</topic><topic>Glioma - metabolism</topic><topic>Glioma - pathology</topic><topic>Glioma cells</topic><topic>Hedgehog protein</topic><topic>Hedgehog Proteins - metabolism</topic><topic>Humans</topic><topic>Immunoprecipitation</topic><topic>Invasiveness</topic><topic>Male</topic><topic>Mice, Inbred BALB C</topic><topic>Mice, Nude</topic><topic>Middle Aged</topic><topic>Models, Biological</topic><topic>mRNA</topic><topic>Neoplasm Invasiveness</topic><topic>Neoplastic Stem Cells - metabolism</topic><topic>Neoplastic Stem Cells - pathology</topic><topic>Oncology</topic><topic>Original Paper</topic><topic>Pathology</topic><topic>Phenotype</topic><topic>Phosphorylation</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>RNA-Binding Proteins - genetics</topic><topic>RNA-Binding Proteins - metabolism</topic><topic>Signal Transduction</topic><topic>Stem cell transplantation</topic><topic>Stem cells</topic><topic>Survival Analysis</topic><topic>Xenografts</topic><topic>Zinc Finger Protein GLI1 - metabolism</topic><topic>Zinc finger proteins</topic><toplevel>online_resources</toplevel><creatorcontrib>Han, Bo</creatorcontrib><creatorcontrib>Wang, Ruijia</creatorcontrib><creatorcontrib>Chen, Yongjie</creatorcontrib><creatorcontrib>Meng, Xiangqi</creatorcontrib><creatorcontrib>Wu, Pengfei</creatorcontrib><creatorcontrib>Li, Ziwei</creatorcontrib><creatorcontrib>Duan, Chunbin</creatorcontrib><creatorcontrib>Li, Qingbin</creatorcontrib><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Zhao, Shihong</creatorcontrib><creatorcontrib>Jiang, Chuanlu</creatorcontrib><creatorcontrib>Cai, Jinquan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Cellular oncology (Dordrecht)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Bo</au><au>Wang, Ruijia</au><au>Chen, Yongjie</au><au>Meng, Xiangqi</au><au>Wu, Pengfei</au><au>Li, Ziwei</au><au>Duan, Chunbin</au><au>Li, Qingbin</au><au>Li, Yang</au><au>Zhao, Shihong</au><au>Jiang, Chuanlu</au><au>Cai, Jinquan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>QKI deficiency maintains glioma stem cell stemness by activating the SHH/GLI1 signaling pathway</atitle><jtitle>Cellular oncology (Dordrecht)</jtitle><stitle>Cell Oncol</stitle><addtitle>Cell Oncol (Dordr)</addtitle><date>2019-12-01</date><risdate>2019</risdate><volume>42</volume><issue>6</issue><spage>801</spage><epage>813</epage><pages>801-813</pages><issn>2211-3428</issn><eissn>2211-3436</eissn><abstract>Purpose Glioblastoma (GBM) stem cells (GSCs) have been found to be the main cause of malignant GBM progression. It has also been found that Quaking homolog (QKI ) plays a predominant role in driving GBM development. Here, we aimed to asses the role of QKI in maintaining GSC stemness and inducing the invasiveness of GBM cells. Methods Public databases were used to assess the expression of QKI and its correlation with stemness markers in primary GBMs. The CRISPR-Cas9 technology was used to generate QK I knockout GBM cells, and RNA immunoprecipitation was used to assess QKI- GLI1 protein-mRNA interactions. In addition, in vitro and in vivo GBM cell proliferation, migration, xenografting and neurosphere formation assays were performed. Results Using public GBM databases, QKI was identified as a potential GSC regulator. We found that QKI could inhibit stem-like cell (SLC) stemness and prolong the survival of xenografted mice. Mechanistically, we found that QKI knockout increased the GLI Family Zinc Finger 1 ( GLI1 ) mRNA level, which is essential for maintaining the self-renewal ability of GSCs. In addition, we found that QKI knockout activated the Hedgehog signaling pathway via Tra-2 and GLI response element (TGE)-specific GLI1 mRNA disruption. Conclusion Our data indicate that upregulation of GLI1 induced by QKI deficiency maintains GSC stemness and enhances the invasiveness of GBM cells, thereby hinting at new options for the treatment of GBM.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>31292920</pmid><doi>10.1007/s13402-019-00463-x</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2211-3428
ispartof Cellular oncology (Dordrecht), 2019-12, Vol.42 (6), p.801-813
issn 2211-3428
2211-3436
language eng
recordid cdi_proquest_miscellaneous_2256105641
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Aged
Animals
Biomedical and Life Sciences
Biomedicine
Brain Neoplasms - genetics
Brain Neoplasms - metabolism
Brain Neoplasms - pathology
Cancer Research
Cell Line, Tumor
Cell migration
Cell Proliferation
Cell self-renewal
CRISPR
Female
Gene Expression Regulation, Neoplastic
Gli1 protein
Glioblastoma
Glioma - genetics
Glioma - metabolism
Glioma - pathology
Glioma cells
Hedgehog protein
Hedgehog Proteins - metabolism
Humans
Immunoprecipitation
Invasiveness
Male
Mice, Inbred BALB C
Mice, Nude
Middle Aged
Models, Biological
mRNA
Neoplasm Invasiveness
Neoplastic Stem Cells - metabolism
Neoplastic Stem Cells - pathology
Oncology
Original Paper
Pathology
Phenotype
Phosphorylation
RNA, Messenger - genetics
RNA, Messenger - metabolism
RNA-Binding Proteins - genetics
RNA-Binding Proteins - metabolism
Signal Transduction
Stem cell transplantation
Stem cells
Survival Analysis
Xenografts
Zinc Finger Protein GLI1 - metabolism
Zinc finger proteins
title QKI deficiency maintains glioma stem cell stemness by activating the SHH/GLI1 signaling pathway
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T10%3A18%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=QKI%20deficiency%20maintains%20glioma%20stem%20cell%20stemness%20by%20activating%20the%20SHH/GLI1%20signaling%20pathway&rft.jtitle=Cellular%20oncology%20(Dordrecht)&rft.au=Han,%20Bo&rft.date=2019-12-01&rft.volume=42&rft.issue=6&rft.spage=801&rft.epage=813&rft.pages=801-813&rft.issn=2211-3428&rft.eissn=2211-3436&rft_id=info:doi/10.1007/s13402-019-00463-x&rft_dat=%3Cproquest_cross%3E2256105641%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2316007005&rft_id=info:pmid/31292920&rfr_iscdi=true