High-Flux Direct-Contact Pervaporation Membranes for Desalination

To solve the pore-wetting problems of membrane distillation, we developed a series of three-layer composite pervaporation (PV) membranes that could be applied in direct contact mode. Specifically, a porous poly­(vinylidene fluoride) (PVDF) layer was placed on top of a polytetrafluoroethylene (PTFE)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2019-08, Vol.11 (31), p.28461-28468
Hauptverfasser: Meng, Junquan, Li, Pei, Cao, Bing
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 28468
container_issue 31
container_start_page 28461
container_title ACS applied materials & interfaces
container_volume 11
creator Meng, Junquan
Li, Pei
Cao, Bing
description To solve the pore-wetting problems of membrane distillation, we developed a series of three-layer composite pervaporation (PV) membranes that could be applied in direct contact mode. Specifically, a porous poly­(vinylidene fluoride) (PVDF) layer was placed on top of a polytetrafluoroethylene (PTFE) microfiltration membrane using the nonsolvent-induced phase inversion method, and then a poly­(vinyl alcohol) (PVA) dense layer was coated on the PVDF/PTFE substrate. The hydrophobic PTFE layer prevented the permeate side of the PVA/PVDF/PTFE membrane from being wetted with cooling water. The PVDF intermediate layer acted as a glue to the PVA and PTFE layers. Also, the PVA dense layer provided a high water flux, salt rejection, and antifouling property. As a result, a high water flux of 44.5 ± 3.0 kg/(m2 h) with the NaCl rejection of >99.99% were achieved for the direct-contact pervaporation (DCPV) membranes when separating a 3.5 wt % NaCl solution at 75.0 ± 0.9 °C using a cooling water stream of 20.6 ± 0.3 °C. Moreover, when the NaCl solution contained 10 mg/L Tween20 (acting as a contaminant), a stable water flux of 45.8 ± 0.6 kg/(m2 h) was maintained for at least 24 h, indicating excellent antifouling property. Furthermore, when the permeate side was under vacuum, the water flux increased to 83.4 ± 6.5 kg/(m2 h), similar to the highest reported data of all the existing PV desalination membranes. More importantly, the easy-to-scale-up fabrication method indicated great potential of DCPV membranes for commercialization.
doi_str_mv 10.1021/acsami.9b08078
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2256101850</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2256101850</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-f1cb22b60ffe4ea9b127e8a724d7c8c6c3fe4dcf4112aaef9646139ce8d2b6543</originalsourceid><addsrcrecordid>eNp1kDFPwzAQhS0EoqWwMqKMCCnFdpzEGauWUqQiGGC2HOcMrpK42EkF_x5DSjemO9197-nuIXRJ8JRgSm6l8rIx06LEHOf8CI1JwVjMaUqPDz1jI3Tm_QbjLKE4PUWjhNCCpYyM0Wxl3t7jZd1_RgvjQHXx3LadVF30DG4nt9bJztg2eoSmdLIFH2nrogV4WZv2d3WOTrSsPVzs6wS9Lu9e5qt4_XT_MJ-tY5kkuIs1USWlZYa1BgayKAnNgcucsipXXGUqCfNKaUYIlRJ0kbGMJIUCXgVVypIJuh58t85-9OA70RivoK7DVbb3gtI0I5jwFAd0OqDKWe8daLF1ppHuSxAsfmITQ2xiH1sQXO29-7KB6oD_5RSAmwEIQrGxvWvDq_-5fQPqB3f4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2256101850</pqid></control><display><type>article</type><title>High-Flux Direct-Contact Pervaporation Membranes for Desalination</title><source>American Chemical Society Journals</source><creator>Meng, Junquan ; Li, Pei ; Cao, Bing</creator><creatorcontrib>Meng, Junquan ; Li, Pei ; Cao, Bing</creatorcontrib><description>To solve the pore-wetting problems of membrane distillation, we developed a series of three-layer composite pervaporation (PV) membranes that could be applied in direct contact mode. Specifically, a porous poly­(vinylidene fluoride) (PVDF) layer was placed on top of a polytetrafluoroethylene (PTFE) microfiltration membrane using the nonsolvent-induced phase inversion method, and then a poly­(vinyl alcohol) (PVA) dense layer was coated on the PVDF/PTFE substrate. The hydrophobic PTFE layer prevented the permeate side of the PVA/PVDF/PTFE membrane from being wetted with cooling water. The PVDF intermediate layer acted as a glue to the PVA and PTFE layers. Also, the PVA dense layer provided a high water flux, salt rejection, and antifouling property. As a result, a high water flux of 44.5 ± 3.0 kg/(m2 h) with the NaCl rejection of &gt;99.99% were achieved for the direct-contact pervaporation (DCPV) membranes when separating a 3.5 wt % NaCl solution at 75.0 ± 0.9 °C using a cooling water stream of 20.6 ± 0.3 °C. Moreover, when the NaCl solution contained 10 mg/L Tween20 (acting as a contaminant), a stable water flux of 45.8 ± 0.6 kg/(m2 h) was maintained for at least 24 h, indicating excellent antifouling property. Furthermore, when the permeate side was under vacuum, the water flux increased to 83.4 ± 6.5 kg/(m2 h), similar to the highest reported data of all the existing PV desalination membranes. More importantly, the easy-to-scale-up fabrication method indicated great potential of DCPV membranes for commercialization.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.9b08078</identifier><identifier>PMID: 31294541</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS applied materials &amp; interfaces, 2019-08, Vol.11 (31), p.28461-28468</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a330t-f1cb22b60ffe4ea9b127e8a724d7c8c6c3fe4dcf4112aaef9646139ce8d2b6543</citedby><cites>FETCH-LOGICAL-a330t-f1cb22b60ffe4ea9b127e8a724d7c8c6c3fe4dcf4112aaef9646139ce8d2b6543</cites><orcidid>0000-0002-1548-4218</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.9b08078$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.9b08078$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,2766,27080,27928,27929,56742,56792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31294541$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Meng, Junquan</creatorcontrib><creatorcontrib>Li, Pei</creatorcontrib><creatorcontrib>Cao, Bing</creatorcontrib><title>High-Flux Direct-Contact Pervaporation Membranes for Desalination</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>To solve the pore-wetting problems of membrane distillation, we developed a series of three-layer composite pervaporation (PV) membranes that could be applied in direct contact mode. Specifically, a porous poly­(vinylidene fluoride) (PVDF) layer was placed on top of a polytetrafluoroethylene (PTFE) microfiltration membrane using the nonsolvent-induced phase inversion method, and then a poly­(vinyl alcohol) (PVA) dense layer was coated on the PVDF/PTFE substrate. The hydrophobic PTFE layer prevented the permeate side of the PVA/PVDF/PTFE membrane from being wetted with cooling water. The PVDF intermediate layer acted as a glue to the PVA and PTFE layers. Also, the PVA dense layer provided a high water flux, salt rejection, and antifouling property. As a result, a high water flux of 44.5 ± 3.0 kg/(m2 h) with the NaCl rejection of &gt;99.99% were achieved for the direct-contact pervaporation (DCPV) membranes when separating a 3.5 wt % NaCl solution at 75.0 ± 0.9 °C using a cooling water stream of 20.6 ± 0.3 °C. Moreover, when the NaCl solution contained 10 mg/L Tween20 (acting as a contaminant), a stable water flux of 45.8 ± 0.6 kg/(m2 h) was maintained for at least 24 h, indicating excellent antifouling property. Furthermore, when the permeate side was under vacuum, the water flux increased to 83.4 ± 6.5 kg/(m2 h), similar to the highest reported data of all the existing PV desalination membranes. More importantly, the easy-to-scale-up fabrication method indicated great potential of DCPV membranes for commercialization.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kDFPwzAQhS0EoqWwMqKMCCnFdpzEGauWUqQiGGC2HOcMrpK42EkF_x5DSjemO9197-nuIXRJ8JRgSm6l8rIx06LEHOf8CI1JwVjMaUqPDz1jI3Tm_QbjLKE4PUWjhNCCpYyM0Wxl3t7jZd1_RgvjQHXx3LadVF30DG4nt9bJztg2eoSmdLIFH2nrogV4WZv2d3WOTrSsPVzs6wS9Lu9e5qt4_XT_MJ-tY5kkuIs1USWlZYa1BgayKAnNgcucsipXXGUqCfNKaUYIlRJ0kbGMJIUCXgVVypIJuh58t85-9OA70RivoK7DVbb3gtI0I5jwFAd0OqDKWe8daLF1ppHuSxAsfmITQ2xiH1sQXO29-7KB6oD_5RSAmwEIQrGxvWvDq_-5fQPqB3f4</recordid><startdate>20190807</startdate><enddate>20190807</enddate><creator>Meng, Junquan</creator><creator>Li, Pei</creator><creator>Cao, Bing</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1548-4218</orcidid></search><sort><creationdate>20190807</creationdate><title>High-Flux Direct-Contact Pervaporation Membranes for Desalination</title><author>Meng, Junquan ; Li, Pei ; Cao, Bing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-f1cb22b60ffe4ea9b127e8a724d7c8c6c3fe4dcf4112aaef9646139ce8d2b6543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meng, Junquan</creatorcontrib><creatorcontrib>Li, Pei</creatorcontrib><creatorcontrib>Cao, Bing</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meng, Junquan</au><au>Li, Pei</au><au>Cao, Bing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Flux Direct-Contact Pervaporation Membranes for Desalination</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2019-08-07</date><risdate>2019</risdate><volume>11</volume><issue>31</issue><spage>28461</spage><epage>28468</epage><pages>28461-28468</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>To solve the pore-wetting problems of membrane distillation, we developed a series of three-layer composite pervaporation (PV) membranes that could be applied in direct contact mode. Specifically, a porous poly­(vinylidene fluoride) (PVDF) layer was placed on top of a polytetrafluoroethylene (PTFE) microfiltration membrane using the nonsolvent-induced phase inversion method, and then a poly­(vinyl alcohol) (PVA) dense layer was coated on the PVDF/PTFE substrate. The hydrophobic PTFE layer prevented the permeate side of the PVA/PVDF/PTFE membrane from being wetted with cooling water. The PVDF intermediate layer acted as a glue to the PVA and PTFE layers. Also, the PVA dense layer provided a high water flux, salt rejection, and antifouling property. As a result, a high water flux of 44.5 ± 3.0 kg/(m2 h) with the NaCl rejection of &gt;99.99% were achieved for the direct-contact pervaporation (DCPV) membranes when separating a 3.5 wt % NaCl solution at 75.0 ± 0.9 °C using a cooling water stream of 20.6 ± 0.3 °C. Moreover, when the NaCl solution contained 10 mg/L Tween20 (acting as a contaminant), a stable water flux of 45.8 ± 0.6 kg/(m2 h) was maintained for at least 24 h, indicating excellent antifouling property. Furthermore, when the permeate side was under vacuum, the water flux increased to 83.4 ± 6.5 kg/(m2 h), similar to the highest reported data of all the existing PV desalination membranes. More importantly, the easy-to-scale-up fabrication method indicated great potential of DCPV membranes for commercialization.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31294541</pmid><doi>10.1021/acsami.9b08078</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-1548-4218</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2019-08, Vol.11 (31), p.28461-28468
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2256101850
source American Chemical Society Journals
title High-Flux Direct-Contact Pervaporation Membranes for Desalination
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T13%3A46%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Flux%20Direct-Contact%20Pervaporation%20Membranes%20for%20Desalination&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Meng,%20Junquan&rft.date=2019-08-07&rft.volume=11&rft.issue=31&rft.spage=28461&rft.epage=28468&rft.pages=28461-28468&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.9b08078&rft_dat=%3Cproquest_cross%3E2256101850%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2256101850&rft_id=info:pmid/31294541&rfr_iscdi=true