Si nanoparticle clusters in hollow carbon capsules (SNC@C) as lithium battery anodes: toward high initial coulombic efficiency

Large volumetric expansion and structural pulverization have been major problems in Si-based anode materials for Li-ion batteries. To overcome this limitation, yolk-shell structured Si-carbon structures have been proposed to allow for the reversible structural breathing of Si nanoparticles confined...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2019-07, Vol.11 (28), p.1365-13658
Hauptverfasser: Kim, Tae Jin, Yoon, Jeong Hoon, Yi, Gi-Ra, Yoo, Pil J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13658
container_issue 28
container_start_page 1365
container_title Nanoscale
container_volume 11
creator Kim, Tae Jin
Yoon, Jeong Hoon
Yi, Gi-Ra
Yoo, Pil J
description Large volumetric expansion and structural pulverization have been major problems in Si-based anode materials for Li-ion batteries. To overcome this limitation, yolk-shell structured Si-carbon structures have been proposed to allow for the reversible structural breathing of Si nanoparticles confined inside the carbon shell. However, initial coulombic efficiency (ICE) of the yolk-shell structured anodes is highly decreased mainly due to their extremely high specific surface area (SSA) and the resulting excessive formation of solid electrolyte interphase (SEI) over the carbon shell. Here, instead of using a single Si nanoparticle-containing yolk-shell structure, we propose a novel structure comprising hollow carbon capsules internally encapsulating Si nanoparticle clusters (SNC@Cs). To implement this structural design, Si nanoparticle clusters are encompassed by a polystyrene matrix (SNC@PS) by emulsion polymerization, followed by coating with a polydopamine (PDA) layer (SNC@PS@PDA). Then, after annealing them for carbonization, SNC@Cs are finally prepared, which can decrease the SSA by a factor of one-third compared to the conventional yolk-shell structures. These SNC@C particles have shown remarkably high ICE values of up to 81%. Moreover, the cycling stability could be improved up to 100 cycles because the properly confined Si cluster inside the stable carbon capsule mitigates structural pulverization during repeated lithiation-delithiation processes of Si nanoparticles. Clustered Si@C core-shell-structured particles are synthesized using an organic/inorganic emulsion polymerization process and utilized as a high performance anode material for Li-ion batteries with highly improved initial Coulombic efficiency.
doi_str_mv 10.1039/c9nr04074a
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2255464967</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2255464967</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-bba41a0b10153744198b25fa2387ed026bc03ead5d44ab5d97549c4c937965f03</originalsourceid><addsrcrecordid>eNp9kctLxDAYxIMovi_elYgXFVbzbDeelOILRMHHuSRp6kbSpiYtshf_dqOrK3jwNAPz-4YPBoAtjI4wouJYizYghnImF8AqSW5EaU4W5z5jK2AtxheEMkEzugxWKCYCCYxXwfuDha1sfSdDb7UzULsh9iZEaFs48c75N6hlUL5N0sXBmQj3H26L0-IAygid7Sd2aKCSfTqawtRUmXgCe_8mQwUn9nmSimxvpYPaD843ympo6tpqa1o93QBLtXTRbH7rOni6OH8srkY3d5fXxdnNSDNE-pFSkmGJFEaY05wxLMaK8FoSOs5NhUimNKJGVrxiTCpeiZwzoZkWNBcZrxFdB_uz3i7418HEvmxs1MY52Ro_xJIQzlnGRJYndO8P-uKH0KbvPilBeI5JlqjDGaWDjzGYuuyCbWSYlhiVn6uUhbi9_1rlLME735WDakw1R39mSMD2DAhRz9PfWVO--19edlVNPwDaJZzh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259257126</pqid></control><display><type>article</type><title>Si nanoparticle clusters in hollow carbon capsules (SNC@C) as lithium battery anodes: toward high initial coulombic efficiency</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Kim, Tae Jin ; Yoon, Jeong Hoon ; Yi, Gi-Ra ; Yoo, Pil J</creator><creatorcontrib>Kim, Tae Jin ; Yoon, Jeong Hoon ; Yi, Gi-Ra ; Yoo, Pil J</creatorcontrib><description>Large volumetric expansion and structural pulverization have been major problems in Si-based anode materials for Li-ion batteries. To overcome this limitation, yolk-shell structured Si-carbon structures have been proposed to allow for the reversible structural breathing of Si nanoparticles confined inside the carbon shell. However, initial coulombic efficiency (ICE) of the yolk-shell structured anodes is highly decreased mainly due to their extremely high specific surface area (SSA) and the resulting excessive formation of solid electrolyte interphase (SEI) over the carbon shell. Here, instead of using a single Si nanoparticle-containing yolk-shell structure, we propose a novel structure comprising hollow carbon capsules internally encapsulating Si nanoparticle clusters (SNC@Cs). To implement this structural design, Si nanoparticle clusters are encompassed by a polystyrene matrix (SNC@PS) by emulsion polymerization, followed by coating with a polydopamine (PDA) layer (SNC@PS@PDA). Then, after annealing them for carbonization, SNC@Cs are finally prepared, which can decrease the SSA by a factor of one-third compared to the conventional yolk-shell structures. These SNC@C particles have shown remarkably high ICE values of up to 81%. Moreover, the cycling stability could be improved up to 100 cycles because the properly confined Si cluster inside the stable carbon capsule mitigates structural pulverization during repeated lithiation-delithiation processes of Si nanoparticles. Clustered Si@C core-shell-structured particles are synthesized using an organic/inorganic emulsion polymerization process and utilized as a high performance anode material for Li-ion batteries with highly improved initial Coulombic efficiency.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/c9nr04074a</identifier><identifier>PMID: 31290911</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Anodes ; Carbon ; Carbonization ; Cesium ; Clusters ; Cycles ; Electrode materials ; Emulsion polymerization ; Lithium ; Lithium batteries ; Lithium-ion batteries ; Mathematical analysis ; Matrix methods ; Nanoemulsions ; Nanoparticles ; Optical microscopy ; Polystyrene resins ; Rechargeable batteries ; Silicon ; Solid electrolytes ; Structural design ; Titanium dioxide</subject><ispartof>Nanoscale, 2019-07, Vol.11 (28), p.1365-13658</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-bba41a0b10153744198b25fa2387ed026bc03ead5d44ab5d97549c4c937965f03</citedby><cites>FETCH-LOGICAL-c402t-bba41a0b10153744198b25fa2387ed026bc03ead5d44ab5d97549c4c937965f03</cites><orcidid>0000-0002-5499-6566 ; 0000-0003-1353-8988</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31290911$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Tae Jin</creatorcontrib><creatorcontrib>Yoon, Jeong Hoon</creatorcontrib><creatorcontrib>Yi, Gi-Ra</creatorcontrib><creatorcontrib>Yoo, Pil J</creatorcontrib><title>Si nanoparticle clusters in hollow carbon capsules (SNC@C) as lithium battery anodes: toward high initial coulombic efficiency</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>Large volumetric expansion and structural pulverization have been major problems in Si-based anode materials for Li-ion batteries. To overcome this limitation, yolk-shell structured Si-carbon structures have been proposed to allow for the reversible structural breathing of Si nanoparticles confined inside the carbon shell. However, initial coulombic efficiency (ICE) of the yolk-shell structured anodes is highly decreased mainly due to their extremely high specific surface area (SSA) and the resulting excessive formation of solid electrolyte interphase (SEI) over the carbon shell. Here, instead of using a single Si nanoparticle-containing yolk-shell structure, we propose a novel structure comprising hollow carbon capsules internally encapsulating Si nanoparticle clusters (SNC@Cs). To implement this structural design, Si nanoparticle clusters are encompassed by a polystyrene matrix (SNC@PS) by emulsion polymerization, followed by coating with a polydopamine (PDA) layer (SNC@PS@PDA). Then, after annealing them for carbonization, SNC@Cs are finally prepared, which can decrease the SSA by a factor of one-third compared to the conventional yolk-shell structures. These SNC@C particles have shown remarkably high ICE values of up to 81%. Moreover, the cycling stability could be improved up to 100 cycles because the properly confined Si cluster inside the stable carbon capsule mitigates structural pulverization during repeated lithiation-delithiation processes of Si nanoparticles. Clustered Si@C core-shell-structured particles are synthesized using an organic/inorganic emulsion polymerization process and utilized as a high performance anode material for Li-ion batteries with highly improved initial Coulombic efficiency.</description><subject>Anodes</subject><subject>Carbon</subject><subject>Carbonization</subject><subject>Cesium</subject><subject>Clusters</subject><subject>Cycles</subject><subject>Electrode materials</subject><subject>Emulsion polymerization</subject><subject>Lithium</subject><subject>Lithium batteries</subject><subject>Lithium-ion batteries</subject><subject>Mathematical analysis</subject><subject>Matrix methods</subject><subject>Nanoemulsions</subject><subject>Nanoparticles</subject><subject>Optical microscopy</subject><subject>Polystyrene resins</subject><subject>Rechargeable batteries</subject><subject>Silicon</subject><subject>Solid electrolytes</subject><subject>Structural design</subject><subject>Titanium dioxide</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kctLxDAYxIMovi_elYgXFVbzbDeelOILRMHHuSRp6kbSpiYtshf_dqOrK3jwNAPz-4YPBoAtjI4wouJYizYghnImF8AqSW5EaU4W5z5jK2AtxheEMkEzugxWKCYCCYxXwfuDha1sfSdDb7UzULsh9iZEaFs48c75N6hlUL5N0sXBmQj3H26L0-IAygid7Sd2aKCSfTqawtRUmXgCe_8mQwUn9nmSimxvpYPaD843ympo6tpqa1o93QBLtXTRbH7rOni6OH8srkY3d5fXxdnNSDNE-pFSkmGJFEaY05wxLMaK8FoSOs5NhUimNKJGVrxiTCpeiZwzoZkWNBcZrxFdB_uz3i7418HEvmxs1MY52Ro_xJIQzlnGRJYndO8P-uKH0KbvPilBeI5JlqjDGaWDjzGYuuyCbWSYlhiVn6uUhbi9_1rlLME735WDakw1R39mSMD2DAhRz9PfWVO--19edlVNPwDaJZzh</recordid><startdate>20190728</startdate><enddate>20190728</enddate><creator>Kim, Tae Jin</creator><creator>Yoon, Jeong Hoon</creator><creator>Yi, Gi-Ra</creator><creator>Yoo, Pil J</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5499-6566</orcidid><orcidid>https://orcid.org/0000-0003-1353-8988</orcidid></search><sort><creationdate>20190728</creationdate><title>Si nanoparticle clusters in hollow carbon capsules (SNC@C) as lithium battery anodes: toward high initial coulombic efficiency</title><author>Kim, Tae Jin ; Yoon, Jeong Hoon ; Yi, Gi-Ra ; Yoo, Pil J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-bba41a0b10153744198b25fa2387ed026bc03ead5d44ab5d97549c4c937965f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Anodes</topic><topic>Carbon</topic><topic>Carbonization</topic><topic>Cesium</topic><topic>Clusters</topic><topic>Cycles</topic><topic>Electrode materials</topic><topic>Emulsion polymerization</topic><topic>Lithium</topic><topic>Lithium batteries</topic><topic>Lithium-ion batteries</topic><topic>Mathematical analysis</topic><topic>Matrix methods</topic><topic>Nanoemulsions</topic><topic>Nanoparticles</topic><topic>Optical microscopy</topic><topic>Polystyrene resins</topic><topic>Rechargeable batteries</topic><topic>Silicon</topic><topic>Solid electrolytes</topic><topic>Structural design</topic><topic>Titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Tae Jin</creatorcontrib><creatorcontrib>Yoon, Jeong Hoon</creatorcontrib><creatorcontrib>Yi, Gi-Ra</creatorcontrib><creatorcontrib>Yoo, Pil J</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Tae Jin</au><au>Yoon, Jeong Hoon</au><au>Yi, Gi-Ra</au><au>Yoo, Pil J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Si nanoparticle clusters in hollow carbon capsules (SNC@C) as lithium battery anodes: toward high initial coulombic efficiency</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2019-07-28</date><risdate>2019</risdate><volume>11</volume><issue>28</issue><spage>1365</spage><epage>13658</epage><pages>1365-13658</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Large volumetric expansion and structural pulverization have been major problems in Si-based anode materials for Li-ion batteries. To overcome this limitation, yolk-shell structured Si-carbon structures have been proposed to allow for the reversible structural breathing of Si nanoparticles confined inside the carbon shell. However, initial coulombic efficiency (ICE) of the yolk-shell structured anodes is highly decreased mainly due to their extremely high specific surface area (SSA) and the resulting excessive formation of solid electrolyte interphase (SEI) over the carbon shell. Here, instead of using a single Si nanoparticle-containing yolk-shell structure, we propose a novel structure comprising hollow carbon capsules internally encapsulating Si nanoparticle clusters (SNC@Cs). To implement this structural design, Si nanoparticle clusters are encompassed by a polystyrene matrix (SNC@PS) by emulsion polymerization, followed by coating with a polydopamine (PDA) layer (SNC@PS@PDA). Then, after annealing them for carbonization, SNC@Cs are finally prepared, which can decrease the SSA by a factor of one-third compared to the conventional yolk-shell structures. These SNC@C particles have shown remarkably high ICE values of up to 81%. Moreover, the cycling stability could be improved up to 100 cycles because the properly confined Si cluster inside the stable carbon capsule mitigates structural pulverization during repeated lithiation-delithiation processes of Si nanoparticles. Clustered Si@C core-shell-structured particles are synthesized using an organic/inorganic emulsion polymerization process and utilized as a high performance anode material for Li-ion batteries with highly improved initial Coulombic efficiency.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>31290911</pmid><doi>10.1039/c9nr04074a</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5499-6566</orcidid><orcidid>https://orcid.org/0000-0003-1353-8988</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof Nanoscale, 2019-07, Vol.11 (28), p.1365-13658
issn 2040-3364
2040-3372
language eng
recordid cdi_proquest_miscellaneous_2255464967
source Royal Society Of Chemistry Journals 2008-
subjects Anodes
Carbon
Carbonization
Cesium
Clusters
Cycles
Electrode materials
Emulsion polymerization
Lithium
Lithium batteries
Lithium-ion batteries
Mathematical analysis
Matrix methods
Nanoemulsions
Nanoparticles
Optical microscopy
Polystyrene resins
Rechargeable batteries
Silicon
Solid electrolytes
Structural design
Titanium dioxide
title Si nanoparticle clusters in hollow carbon capsules (SNC@C) as lithium battery anodes: toward high initial coulombic efficiency
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T21%3A53%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Si%20nanoparticle%20clusters%20in%20hollow%20carbon%20capsules%20(SNC@C)%20as%20lithium%20battery%20anodes:%20toward%20high%20initial%20coulombic%20efficiency&rft.jtitle=Nanoscale&rft.au=Kim,%20Tae%20Jin&rft.date=2019-07-28&rft.volume=11&rft.issue=28&rft.spage=1365&rft.epage=13658&rft.pages=1365-13658&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/c9nr04074a&rft_dat=%3Cproquest_pubme%3E2255464967%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259257126&rft_id=info:pmid/31290911&rfr_iscdi=true