Si nanoparticle clusters in hollow carbon capsules (SNC@C) as lithium battery anodes: toward high initial coulombic efficiency
Large volumetric expansion and structural pulverization have been major problems in Si-based anode materials for Li-ion batteries. To overcome this limitation, yolk-shell structured Si-carbon structures have been proposed to allow for the reversible structural breathing of Si nanoparticles confined...
Gespeichert in:
Veröffentlicht in: | Nanoscale 2019-07, Vol.11 (28), p.1365-13658 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13658 |
---|---|
container_issue | 28 |
container_start_page | 1365 |
container_title | Nanoscale |
container_volume | 11 |
creator | Kim, Tae Jin Yoon, Jeong Hoon Yi, Gi-Ra Yoo, Pil J |
description | Large volumetric expansion and structural pulverization have been major problems in Si-based anode materials for Li-ion batteries. To overcome this limitation, yolk-shell structured Si-carbon structures have been proposed to allow for the reversible structural breathing of Si nanoparticles confined inside the carbon shell. However, initial coulombic efficiency (ICE) of the yolk-shell structured anodes is highly decreased mainly due to their extremely high specific surface area (SSA) and the resulting excessive formation of solid electrolyte interphase (SEI) over the carbon shell. Here, instead of using a single Si nanoparticle-containing yolk-shell structure, we propose a novel structure comprising hollow carbon capsules internally encapsulating Si nanoparticle clusters (SNC@Cs). To implement this structural design, Si nanoparticle clusters are encompassed by a polystyrene matrix (SNC@PS) by emulsion polymerization, followed by coating with a polydopamine (PDA) layer (SNC@PS@PDA). Then, after annealing them for carbonization, SNC@Cs are finally prepared, which can decrease the SSA by a factor of one-third compared to the conventional yolk-shell structures. These SNC@C particles have shown remarkably high ICE values of up to 81%. Moreover, the cycling stability could be improved up to 100 cycles because the properly confined Si cluster inside the stable carbon capsule mitigates structural pulverization during repeated lithiation-delithiation processes of Si nanoparticles.
Clustered Si@C core-shell-structured particles are synthesized using an organic/inorganic emulsion polymerization process and utilized as a high performance anode material for Li-ion batteries with highly improved initial Coulombic efficiency. |
doi_str_mv | 10.1039/c9nr04074a |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2255464967</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2255464967</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-bba41a0b10153744198b25fa2387ed026bc03ead5d44ab5d97549c4c937965f03</originalsourceid><addsrcrecordid>eNp9kctLxDAYxIMovi_elYgXFVbzbDeelOILRMHHuSRp6kbSpiYtshf_dqOrK3jwNAPz-4YPBoAtjI4wouJYizYghnImF8AqSW5EaU4W5z5jK2AtxheEMkEzugxWKCYCCYxXwfuDha1sfSdDb7UzULsh9iZEaFs48c75N6hlUL5N0sXBmQj3H26L0-IAygid7Sd2aKCSfTqawtRUmXgCe_8mQwUn9nmSimxvpYPaD843ympo6tpqa1o93QBLtXTRbH7rOni6OH8srkY3d5fXxdnNSDNE-pFSkmGJFEaY05wxLMaK8FoSOs5NhUimNKJGVrxiTCpeiZwzoZkWNBcZrxFdB_uz3i7418HEvmxs1MY52Ro_xJIQzlnGRJYndO8P-uKH0KbvPilBeI5JlqjDGaWDjzGYuuyCbWSYlhiVn6uUhbi9_1rlLME735WDakw1R39mSMD2DAhRz9PfWVO--19edlVNPwDaJZzh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259257126</pqid></control><display><type>article</type><title>Si nanoparticle clusters in hollow carbon capsules (SNC@C) as lithium battery anodes: toward high initial coulombic efficiency</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Kim, Tae Jin ; Yoon, Jeong Hoon ; Yi, Gi-Ra ; Yoo, Pil J</creator><creatorcontrib>Kim, Tae Jin ; Yoon, Jeong Hoon ; Yi, Gi-Ra ; Yoo, Pil J</creatorcontrib><description>Large volumetric expansion and structural pulverization have been major problems in Si-based anode materials for Li-ion batteries. To overcome this limitation, yolk-shell structured Si-carbon structures have been proposed to allow for the reversible structural breathing of Si nanoparticles confined inside the carbon shell. However, initial coulombic efficiency (ICE) of the yolk-shell structured anodes is highly decreased mainly due to their extremely high specific surface area (SSA) and the resulting excessive formation of solid electrolyte interphase (SEI) over the carbon shell. Here, instead of using a single Si nanoparticle-containing yolk-shell structure, we propose a novel structure comprising hollow carbon capsules internally encapsulating Si nanoparticle clusters (SNC@Cs). To implement this structural design, Si nanoparticle clusters are encompassed by a polystyrene matrix (SNC@PS) by emulsion polymerization, followed by coating with a polydopamine (PDA) layer (SNC@PS@PDA). Then, after annealing them for carbonization, SNC@Cs are finally prepared, which can decrease the SSA by a factor of one-third compared to the conventional yolk-shell structures. These SNC@C particles have shown remarkably high ICE values of up to 81%. Moreover, the cycling stability could be improved up to 100 cycles because the properly confined Si cluster inside the stable carbon capsule mitigates structural pulverization during repeated lithiation-delithiation processes of Si nanoparticles.
Clustered Si@C core-shell-structured particles are synthesized using an organic/inorganic emulsion polymerization process and utilized as a high performance anode material for Li-ion batteries with highly improved initial Coulombic efficiency.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/c9nr04074a</identifier><identifier>PMID: 31290911</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Anodes ; Carbon ; Carbonization ; Cesium ; Clusters ; Cycles ; Electrode materials ; Emulsion polymerization ; Lithium ; Lithium batteries ; Lithium-ion batteries ; Mathematical analysis ; Matrix methods ; Nanoemulsions ; Nanoparticles ; Optical microscopy ; Polystyrene resins ; Rechargeable batteries ; Silicon ; Solid electrolytes ; Structural design ; Titanium dioxide</subject><ispartof>Nanoscale, 2019-07, Vol.11 (28), p.1365-13658</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-bba41a0b10153744198b25fa2387ed026bc03ead5d44ab5d97549c4c937965f03</citedby><cites>FETCH-LOGICAL-c402t-bba41a0b10153744198b25fa2387ed026bc03ead5d44ab5d97549c4c937965f03</cites><orcidid>0000-0002-5499-6566 ; 0000-0003-1353-8988</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31290911$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Tae Jin</creatorcontrib><creatorcontrib>Yoon, Jeong Hoon</creatorcontrib><creatorcontrib>Yi, Gi-Ra</creatorcontrib><creatorcontrib>Yoo, Pil J</creatorcontrib><title>Si nanoparticle clusters in hollow carbon capsules (SNC@C) as lithium battery anodes: toward high initial coulombic efficiency</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>Large volumetric expansion and structural pulverization have been major problems in Si-based anode materials for Li-ion batteries. To overcome this limitation, yolk-shell structured Si-carbon structures have been proposed to allow for the reversible structural breathing of Si nanoparticles confined inside the carbon shell. However, initial coulombic efficiency (ICE) of the yolk-shell structured anodes is highly decreased mainly due to their extremely high specific surface area (SSA) and the resulting excessive formation of solid electrolyte interphase (SEI) over the carbon shell. Here, instead of using a single Si nanoparticle-containing yolk-shell structure, we propose a novel structure comprising hollow carbon capsules internally encapsulating Si nanoparticle clusters (SNC@Cs). To implement this structural design, Si nanoparticle clusters are encompassed by a polystyrene matrix (SNC@PS) by emulsion polymerization, followed by coating with a polydopamine (PDA) layer (SNC@PS@PDA). Then, after annealing them for carbonization, SNC@Cs are finally prepared, which can decrease the SSA by a factor of one-third compared to the conventional yolk-shell structures. These SNC@C particles have shown remarkably high ICE values of up to 81%. Moreover, the cycling stability could be improved up to 100 cycles because the properly confined Si cluster inside the stable carbon capsule mitigates structural pulverization during repeated lithiation-delithiation processes of Si nanoparticles.
Clustered Si@C core-shell-structured particles are synthesized using an organic/inorganic emulsion polymerization process and utilized as a high performance anode material for Li-ion batteries with highly improved initial Coulombic efficiency.</description><subject>Anodes</subject><subject>Carbon</subject><subject>Carbonization</subject><subject>Cesium</subject><subject>Clusters</subject><subject>Cycles</subject><subject>Electrode materials</subject><subject>Emulsion polymerization</subject><subject>Lithium</subject><subject>Lithium batteries</subject><subject>Lithium-ion batteries</subject><subject>Mathematical analysis</subject><subject>Matrix methods</subject><subject>Nanoemulsions</subject><subject>Nanoparticles</subject><subject>Optical microscopy</subject><subject>Polystyrene resins</subject><subject>Rechargeable batteries</subject><subject>Silicon</subject><subject>Solid electrolytes</subject><subject>Structural design</subject><subject>Titanium dioxide</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kctLxDAYxIMovi_elYgXFVbzbDeelOILRMHHuSRp6kbSpiYtshf_dqOrK3jwNAPz-4YPBoAtjI4wouJYizYghnImF8AqSW5EaU4W5z5jK2AtxheEMkEzugxWKCYCCYxXwfuDha1sfSdDb7UzULsh9iZEaFs48c75N6hlUL5N0sXBmQj3H26L0-IAygid7Sd2aKCSfTqawtRUmXgCe_8mQwUn9nmSimxvpYPaD843ympo6tpqa1o93QBLtXTRbH7rOni6OH8srkY3d5fXxdnNSDNE-pFSkmGJFEaY05wxLMaK8FoSOs5NhUimNKJGVrxiTCpeiZwzoZkWNBcZrxFdB_uz3i7418HEvmxs1MY52Ro_xJIQzlnGRJYndO8P-uKH0KbvPilBeI5JlqjDGaWDjzGYuuyCbWSYlhiVn6uUhbi9_1rlLME735WDakw1R39mSMD2DAhRz9PfWVO--19edlVNPwDaJZzh</recordid><startdate>20190728</startdate><enddate>20190728</enddate><creator>Kim, Tae Jin</creator><creator>Yoon, Jeong Hoon</creator><creator>Yi, Gi-Ra</creator><creator>Yoo, Pil J</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5499-6566</orcidid><orcidid>https://orcid.org/0000-0003-1353-8988</orcidid></search><sort><creationdate>20190728</creationdate><title>Si nanoparticle clusters in hollow carbon capsules (SNC@C) as lithium battery anodes: toward high initial coulombic efficiency</title><author>Kim, Tae Jin ; Yoon, Jeong Hoon ; Yi, Gi-Ra ; Yoo, Pil J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-bba41a0b10153744198b25fa2387ed026bc03ead5d44ab5d97549c4c937965f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Anodes</topic><topic>Carbon</topic><topic>Carbonization</topic><topic>Cesium</topic><topic>Clusters</topic><topic>Cycles</topic><topic>Electrode materials</topic><topic>Emulsion polymerization</topic><topic>Lithium</topic><topic>Lithium batteries</topic><topic>Lithium-ion batteries</topic><topic>Mathematical analysis</topic><topic>Matrix methods</topic><topic>Nanoemulsions</topic><topic>Nanoparticles</topic><topic>Optical microscopy</topic><topic>Polystyrene resins</topic><topic>Rechargeable batteries</topic><topic>Silicon</topic><topic>Solid electrolytes</topic><topic>Structural design</topic><topic>Titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Tae Jin</creatorcontrib><creatorcontrib>Yoon, Jeong Hoon</creatorcontrib><creatorcontrib>Yi, Gi-Ra</creatorcontrib><creatorcontrib>Yoo, Pil J</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Tae Jin</au><au>Yoon, Jeong Hoon</au><au>Yi, Gi-Ra</au><au>Yoo, Pil J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Si nanoparticle clusters in hollow carbon capsules (SNC@C) as lithium battery anodes: toward high initial coulombic efficiency</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2019-07-28</date><risdate>2019</risdate><volume>11</volume><issue>28</issue><spage>1365</spage><epage>13658</epage><pages>1365-13658</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Large volumetric expansion and structural pulverization have been major problems in Si-based anode materials for Li-ion batteries. To overcome this limitation, yolk-shell structured Si-carbon structures have been proposed to allow for the reversible structural breathing of Si nanoparticles confined inside the carbon shell. However, initial coulombic efficiency (ICE) of the yolk-shell structured anodes is highly decreased mainly due to their extremely high specific surface area (SSA) and the resulting excessive formation of solid electrolyte interphase (SEI) over the carbon shell. Here, instead of using a single Si nanoparticle-containing yolk-shell structure, we propose a novel structure comprising hollow carbon capsules internally encapsulating Si nanoparticle clusters (SNC@Cs). To implement this structural design, Si nanoparticle clusters are encompassed by a polystyrene matrix (SNC@PS) by emulsion polymerization, followed by coating with a polydopamine (PDA) layer (SNC@PS@PDA). Then, after annealing them for carbonization, SNC@Cs are finally prepared, which can decrease the SSA by a factor of one-third compared to the conventional yolk-shell structures. These SNC@C particles have shown remarkably high ICE values of up to 81%. Moreover, the cycling stability could be improved up to 100 cycles because the properly confined Si cluster inside the stable carbon capsule mitigates structural pulverization during repeated lithiation-delithiation processes of Si nanoparticles.
Clustered Si@C core-shell-structured particles are synthesized using an organic/inorganic emulsion polymerization process and utilized as a high performance anode material for Li-ion batteries with highly improved initial Coulombic efficiency.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>31290911</pmid><doi>10.1039/c9nr04074a</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5499-6566</orcidid><orcidid>https://orcid.org/0000-0003-1353-8988</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2040-3364 |
ispartof | Nanoscale, 2019-07, Vol.11 (28), p.1365-13658 |
issn | 2040-3364 2040-3372 |
language | eng |
recordid | cdi_proquest_miscellaneous_2255464967 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Anodes Carbon Carbonization Cesium Clusters Cycles Electrode materials Emulsion polymerization Lithium Lithium batteries Lithium-ion batteries Mathematical analysis Matrix methods Nanoemulsions Nanoparticles Optical microscopy Polystyrene resins Rechargeable batteries Silicon Solid electrolytes Structural design Titanium dioxide |
title | Si nanoparticle clusters in hollow carbon capsules (SNC@C) as lithium battery anodes: toward high initial coulombic efficiency |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T21%3A53%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Si%20nanoparticle%20clusters%20in%20hollow%20carbon%20capsules%20(SNC@C)%20as%20lithium%20battery%20anodes:%20toward%20high%20initial%20coulombic%20efficiency&rft.jtitle=Nanoscale&rft.au=Kim,%20Tae%20Jin&rft.date=2019-07-28&rft.volume=11&rft.issue=28&rft.spage=1365&rft.epage=13658&rft.pages=1365-13658&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/c9nr04074a&rft_dat=%3Cproquest_pubme%3E2255464967%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259257126&rft_id=info:pmid/31290911&rfr_iscdi=true |