Analysis of Malaria Control Measures’ Effectiveness Using Multistage Vector Model

We analyze an epidemiological model to evaluate the effectiveness of multiple means of control in malaria-endemic areas. The mathematical model consists of a system of several ordinary differential equations and is based on a multi-compartment representation of the system. The model takes into accou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of mathematical biology 2019-11, Vol.81 (11), p.4366-4411
Hauptverfasser: Kamgang, Jean Claude, Thron, Christopher Penniman
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4411
container_issue 11
container_start_page 4366
container_title Bulletin of mathematical biology
container_volume 81
creator Kamgang, Jean Claude
Thron, Christopher Penniman
description We analyze an epidemiological model to evaluate the effectiveness of multiple means of control in malaria-endemic areas. The mathematical model consists of a system of several ordinary differential equations and is based on a multi-compartment representation of the system. The model takes into account the multiple resting–questing stages undergone by adult female mosquitoes during the period in which they function as disease vectors. We compute the basic reproduction number R 0 and show that if R 0 ≤ 1 , the disease-free equilibrium is globally asymptotically stable (GAS) on the nonnegative orthant. If R 0 > 1 , the system admits a unique endemic equilibrium (EE) that is GAS. We perform a sensitivity analysis of the dependence of R 0 and the EE on parameters related to control measures, such as killing effectiveness and bite prevention. Finally, we discuss the implications for a comprehensive, cost-effective strategy for malaria control.
doi_str_mv 10.1007/s11538-019-00637-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2254518855</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2317063131</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-92633cf03e54b8c9e1931bf2504bb59a70387caf0a932fc3f86a431e173474603</originalsourceid><addsrcrecordid>eNp9kMFO3DAQhi3UCrYLL9BDZamXXlLGnjiJj2hFCxIrDi1cLSeMV0HZmHqSStz6Grxen6SmS0HqAfngw3z_7_EnxHsFnxVAfcxKGWwKULYAqLAuqj2xUEbrwlag34gFgNVFo0s4EO-YbyGHLNp9cYBKNxWW9UJ8Oxn9cM89yxjk2g8-9V6u4jilOMg1eZ4T8e9fD_I0BOqm_ieNxCyvuB83cj0PU8-T35C8zsOY5Dre0HAo3gY_MB093Utx9eX0--qsuLj8er46uSg6rM1UWF0hdgGQTNk2nSVlUbVBGyjb1lhfAzZ15wN4izp0GJrKl6hI1XnzsgJcik-73rsUf8zEk9v23NEw-JHizE5rUxrVNMZk9ON_6G2cU_56plDV2Z7KZyn0jupSZE4U3F3qtz7dOwXuUbnbKXdZufur3FU59OGpem63dPMc-ec4A7gDOI_GDaWXt1-p_QNgb4tV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2317063131</pqid></control><display><type>article</type><title>Analysis of Malaria Control Measures’ Effectiveness Using Multistage Vector Model</title><source>SpringerNature Journals</source><creator>Kamgang, Jean Claude ; Thron, Christopher Penniman</creator><creatorcontrib>Kamgang, Jean Claude ; Thron, Christopher Penniman</creatorcontrib><description>We analyze an epidemiological model to evaluate the effectiveness of multiple means of control in malaria-endemic areas. The mathematical model consists of a system of several ordinary differential equations and is based on a multi-compartment representation of the system. The model takes into account the multiple resting–questing stages undergone by adult female mosquitoes during the period in which they function as disease vectors. We compute the basic reproduction number R 0 and show that if R 0 ≤ 1 , the disease-free equilibrium is globally asymptotically stable (GAS) on the nonnegative orthant. If R 0 &gt; 1 , the system admits a unique endemic equilibrium (EE) that is GAS. We perform a sensitivity analysis of the dependence of R 0 and the EE on parameters related to control measures, such as killing effectiveness and bite prevention. Finally, we discuss the implications for a comprehensive, cost-effective strategy for malaria control.</description><identifier>ISSN: 0092-8240</identifier><identifier>EISSN: 1522-9602</identifier><identifier>DOI: 10.1007/s11538-019-00637-6</identifier><identifier>PMID: 31286347</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Cell Biology ; Dependence ; Differential equations ; Epidemiology ; Life Sciences ; Malaria ; Mathematical and Computational Biology ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Ordinary differential equations ; Sensitivity analysis ; Special Issue: Mathematical Epidemiology ; Vector-borne diseases ; Vectors</subject><ispartof>Bulletin of mathematical biology, 2019-11, Vol.81 (11), p.4366-4411</ispartof><rights>Society for Mathematical Biology 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-92633cf03e54b8c9e1931bf2504bb59a70387caf0a932fc3f86a431e173474603</citedby><cites>FETCH-LOGICAL-c375t-92633cf03e54b8c9e1931bf2504bb59a70387caf0a932fc3f86a431e173474603</cites><orcidid>0000-0002-3903-2283 ; 0000-0002-8960-2504</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11538-019-00637-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11538-019-00637-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31286347$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kamgang, Jean Claude</creatorcontrib><creatorcontrib>Thron, Christopher Penniman</creatorcontrib><title>Analysis of Malaria Control Measures’ Effectiveness Using Multistage Vector Model</title><title>Bulletin of mathematical biology</title><addtitle>Bull Math Biol</addtitle><addtitle>Bull Math Biol</addtitle><description>We analyze an epidemiological model to evaluate the effectiveness of multiple means of control in malaria-endemic areas. The mathematical model consists of a system of several ordinary differential equations and is based on a multi-compartment representation of the system. The model takes into account the multiple resting–questing stages undergone by adult female mosquitoes during the period in which they function as disease vectors. We compute the basic reproduction number R 0 and show that if R 0 ≤ 1 , the disease-free equilibrium is globally asymptotically stable (GAS) on the nonnegative orthant. If R 0 &gt; 1 , the system admits a unique endemic equilibrium (EE) that is GAS. We perform a sensitivity analysis of the dependence of R 0 and the EE on parameters related to control measures, such as killing effectiveness and bite prevention. Finally, we discuss the implications for a comprehensive, cost-effective strategy for malaria control.</description><subject>Cell Biology</subject><subject>Dependence</subject><subject>Differential equations</subject><subject>Epidemiology</subject><subject>Life Sciences</subject><subject>Malaria</subject><subject>Mathematical and Computational Biology</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Ordinary differential equations</subject><subject>Sensitivity analysis</subject><subject>Special Issue: Mathematical Epidemiology</subject><subject>Vector-borne diseases</subject><subject>Vectors</subject><issn>0092-8240</issn><issn>1522-9602</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kMFO3DAQhi3UCrYLL9BDZamXXlLGnjiJj2hFCxIrDi1cLSeMV0HZmHqSStz6Grxen6SmS0HqAfngw3z_7_EnxHsFnxVAfcxKGWwKULYAqLAuqj2xUEbrwlag34gFgNVFo0s4EO-YbyGHLNp9cYBKNxWW9UJ8Oxn9cM89yxjk2g8-9V6u4jilOMg1eZ4T8e9fD_I0BOqm_ieNxCyvuB83cj0PU8-T35C8zsOY5Dre0HAo3gY_MB093Utx9eX0--qsuLj8er46uSg6rM1UWF0hdgGQTNk2nSVlUbVBGyjb1lhfAzZ15wN4izp0GJrKl6hI1XnzsgJcik-73rsUf8zEk9v23NEw-JHizE5rUxrVNMZk9ON_6G2cU_56plDV2Z7KZyn0jupSZE4U3F3qtz7dOwXuUbnbKXdZufur3FU59OGpem63dPMc-ec4A7gDOI_GDaWXt1-p_QNgb4tV</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Kamgang, Jean Claude</creator><creator>Thron, Christopher Penniman</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SS</scope><scope>7TK</scope><scope>JQ2</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3903-2283</orcidid><orcidid>https://orcid.org/0000-0002-8960-2504</orcidid></search><sort><creationdate>20191101</creationdate><title>Analysis of Malaria Control Measures’ Effectiveness Using Multistage Vector Model</title><author>Kamgang, Jean Claude ; Thron, Christopher Penniman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-92633cf03e54b8c9e1931bf2504bb59a70387caf0a932fc3f86a431e173474603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Cell Biology</topic><topic>Dependence</topic><topic>Differential equations</topic><topic>Epidemiology</topic><topic>Life Sciences</topic><topic>Malaria</topic><topic>Mathematical and Computational Biology</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Ordinary differential equations</topic><topic>Sensitivity analysis</topic><topic>Special Issue: Mathematical Epidemiology</topic><topic>Vector-borne diseases</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kamgang, Jean Claude</creatorcontrib><creatorcontrib>Thron, Christopher Penniman</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Bulletin of mathematical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kamgang, Jean Claude</au><au>Thron, Christopher Penniman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of Malaria Control Measures’ Effectiveness Using Multistage Vector Model</atitle><jtitle>Bulletin of mathematical biology</jtitle><stitle>Bull Math Biol</stitle><addtitle>Bull Math Biol</addtitle><date>2019-11-01</date><risdate>2019</risdate><volume>81</volume><issue>11</issue><spage>4366</spage><epage>4411</epage><pages>4366-4411</pages><issn>0092-8240</issn><eissn>1522-9602</eissn><abstract>We analyze an epidemiological model to evaluate the effectiveness of multiple means of control in malaria-endemic areas. The mathematical model consists of a system of several ordinary differential equations and is based on a multi-compartment representation of the system. The model takes into account the multiple resting–questing stages undergone by adult female mosquitoes during the period in which they function as disease vectors. We compute the basic reproduction number R 0 and show that if R 0 ≤ 1 , the disease-free equilibrium is globally asymptotically stable (GAS) on the nonnegative orthant. If R 0 &gt; 1 , the system admits a unique endemic equilibrium (EE) that is GAS. We perform a sensitivity analysis of the dependence of R 0 and the EE on parameters related to control measures, such as killing effectiveness and bite prevention. Finally, we discuss the implications for a comprehensive, cost-effective strategy for malaria control.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>31286347</pmid><doi>10.1007/s11538-019-00637-6</doi><tpages>46</tpages><orcidid>https://orcid.org/0000-0002-3903-2283</orcidid><orcidid>https://orcid.org/0000-0002-8960-2504</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0092-8240
ispartof Bulletin of mathematical biology, 2019-11, Vol.81 (11), p.4366-4411
issn 0092-8240
1522-9602
language eng
recordid cdi_proquest_miscellaneous_2254518855
source SpringerNature Journals
subjects Cell Biology
Dependence
Differential equations
Epidemiology
Life Sciences
Malaria
Mathematical and Computational Biology
Mathematical models
Mathematics
Mathematics and Statistics
Ordinary differential equations
Sensitivity analysis
Special Issue: Mathematical Epidemiology
Vector-borne diseases
Vectors
title Analysis of Malaria Control Measures’ Effectiveness Using Multistage Vector Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T04%3A01%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20Malaria%20Control%20Measures%E2%80%99%20Effectiveness%20Using%20Multistage%20Vector%20Model&rft.jtitle=Bulletin%20of%20mathematical%20biology&rft.au=Kamgang,%20Jean%20Claude&rft.date=2019-11-01&rft.volume=81&rft.issue=11&rft.spage=4366&rft.epage=4411&rft.pages=4366-4411&rft.issn=0092-8240&rft.eissn=1522-9602&rft_id=info:doi/10.1007/s11538-019-00637-6&rft_dat=%3Cproquest_cross%3E2317063131%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2317063131&rft_id=info:pmid/31286347&rfr_iscdi=true