Physcomitrella STEMIN transcription factor induces stem cell formation with epigenetic reprogramming
Epigenetic modifications, including histone modifications, stabilize cell-specific gene expression programmes to maintain cell identities in both metazoans and land plants 1 – 3 . Notwithstanding the existence of these stable cell states, in land plants, stem cells are formed from differentiated cel...
Gespeichert in:
Veröffentlicht in: | Nature plants 2019-07, Vol.5 (7), p.681-690 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 690 |
---|---|
container_issue | 7 |
container_start_page | 681 |
container_title | Nature plants |
container_volume | 5 |
creator | Ishikawa, Masaki Morishita, Mio Higuchi, Yohei Ichikawa, Shunsuke Ishikawa, Takaaki Nishiyama, Tomoaki Kabeya, Yukiko Hiwatashi, Yuji Kurata, Tetsuya Kubo, Minoru Shigenobu, Shuji Tamada, Yosuke Sato, Yoshikatsu Hasebe, Mitsuyasu |
description | Epigenetic modifications, including histone modifications, stabilize cell-specific gene expression programmes to maintain cell identities in both metazoans and land plants
1
–
3
. Notwithstanding the existence of these stable cell states, in land plants, stem cells are formed from differentiated cells during post-embryonic development and regeneration
4
–
6
, indicating that land plants have an intrinsic ability to regulate epigenetic memory to initiate a new gene regulatory network. However, it is less well understood how epigenetic modifications are locally regulated to influence the specific genes necessary for cellular changes without affecting other genes in a genome. In this study, we found that ectopic induction of the AP2/ERF transcription factor STEMIN1 in leaf cells of the moss
Physcomitrella patens
decreases a repressive chromatin mark, histone H3 lysine 27 trimethylation (H3K27me3), on its direct target genes before cell division, resulting in the conversion of leaf cells to chloronema apical stem cells. STEMIN1 and its homologues positively regulate the formation of secondary chloronema apical stem cells from chloronema cells during development. Our results suggest that STEMIN1 functions within an intrinsic mechanism underlying local H3K27me3 reprogramming to initiate stem cell formation.
In moss, a subgroup of uncharacterized AP2/ERF transcription factors called STEMIN promotes stem cell formation and regeneration, specifically through a repressive chromatin mark on its target genes. |
doi_str_mv | 10.1038/s41477-019-0464-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2254510075</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2254510075</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-7b852cc1f71aa978bcd0d1977fd484626c6861e1385b6dd16279a47bafa3fe0e3</originalsourceid><addsrcrecordid>eNp1kUlLBDEQhYMoKuoP8CIBL15aU9nnKOIGbqCeQzqdHiPT3WOSRvz3Zhw3BE9VUF-9etRDaBfIIRCmjxIHrlRFYFIRLnlFV9AmJUJUhCq9-qvfQDspPRNCQAnBJFlHGwyoFkKyTdTcPb0lN3QhRz-bWXz_cHp9eYNztH1yMcxzGHrcWpeHiEPfjM4nnLLvsCs4bofY2Q_kNeQn7Odh6nufg8PRz-MwjbbrQj_dRmutnSW_81m30OPZ6cPJRXV1e355cnxVOaZorlStBXUOWgXWTpSuXUMamCjVNlxzSaWTWoIHpkUtmwYkVRPLVW1by1pPPNtCB0vdcvtl9CmbLqSFUdv7YUyGUsEFEKJEQff_oM_DGPvibkExDZwTKBQsKReHlKJvzTyGzsY3A8QsUjDLFExJwSxSMLTs7H0qj3Xnm--Nr58XgC6BVEb91Mef0_-rvgN0dpLZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2253814401</pqid></control><display><type>article</type><title>Physcomitrella STEMIN transcription factor induces stem cell formation with epigenetic reprogramming</title><source>MEDLINE</source><source>Nature</source><source>SpringerNature Journals</source><creator>Ishikawa, Masaki ; Morishita, Mio ; Higuchi, Yohei ; Ichikawa, Shunsuke ; Ishikawa, Takaaki ; Nishiyama, Tomoaki ; Kabeya, Yukiko ; Hiwatashi, Yuji ; Kurata, Tetsuya ; Kubo, Minoru ; Shigenobu, Shuji ; Tamada, Yosuke ; Sato, Yoshikatsu ; Hasebe, Mitsuyasu</creator><creatorcontrib>Ishikawa, Masaki ; Morishita, Mio ; Higuchi, Yohei ; Ichikawa, Shunsuke ; Ishikawa, Takaaki ; Nishiyama, Tomoaki ; Kabeya, Yukiko ; Hiwatashi, Yuji ; Kurata, Tetsuya ; Kubo, Minoru ; Shigenobu, Shuji ; Tamada, Yosuke ; Sato, Yoshikatsu ; Hasebe, Mitsuyasu</creatorcontrib><description>Epigenetic modifications, including histone modifications, stabilize cell-specific gene expression programmes to maintain cell identities in both metazoans and land plants
1
–
3
. Notwithstanding the existence of these stable cell states, in land plants, stem cells are formed from differentiated cells during post-embryonic development and regeneration
4
–
6
, indicating that land plants have an intrinsic ability to regulate epigenetic memory to initiate a new gene regulatory network. However, it is less well understood how epigenetic modifications are locally regulated to influence the specific genes necessary for cellular changes without affecting other genes in a genome. In this study, we found that ectopic induction of the AP2/ERF transcription factor STEMIN1 in leaf cells of the moss
Physcomitrella patens
decreases a repressive chromatin mark, histone H3 lysine 27 trimethylation (H3K27me3), on its direct target genes before cell division, resulting in the conversion of leaf cells to chloronema apical stem cells. STEMIN1 and its homologues positively regulate the formation of secondary chloronema apical stem cells from chloronema cells during development. Our results suggest that STEMIN1 functions within an intrinsic mechanism underlying local H3K27me3 reprogramming to initiate stem cell formation.
In moss, a subgroup of uncharacterized AP2/ERF transcription factors called STEMIN promotes stem cell formation and regeneration, specifically through a repressive chromatin mark on its target genes.</description><identifier>ISSN: 2055-0278</identifier><identifier>EISSN: 2055-0278</identifier><identifier>DOI: 10.1038/s41477-019-0464-2</identifier><identifier>PMID: 31285563</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>14/28 ; 14/34 ; 14/35 ; 14/63 ; 38 ; 38/22 ; 38/77 ; 42 ; 45 ; 45/15 ; 45/22 ; 45/23 ; 45/29 ; 45/41 ; 45/90 ; 631/449/2653/2654 ; 631/449/2653/2659 ; 82 ; Biomedical and Life Sciences ; Bryopsida - genetics ; Bryopsida - growth & development ; Bryopsida - metabolism ; Cell division ; Cellular Reprogramming ; Embryonic growth stage ; Epigenesis, Genetic ; Epigenetics ; Gene expression ; Gene Expression Regulation, Plant ; Histones - genetics ; Histones - metabolism ; Leaves ; Letter ; Life Sciences ; Methylation ; Plant Leaves - genetics ; Plant Leaves - growth & development ; Plant Leaves - metabolism ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plant Sciences ; Stem cells ; Stem Cells - cytology ; Stem Cells - metabolism ; Transcription factors ; Transcription Factors - genetics ; Transcription Factors - metabolism</subject><ispartof>Nature plants, 2019-07, Vol.5 (7), p.681-690</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><rights>Copyright Nature Publishing Group Jul 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-7b852cc1f71aa978bcd0d1977fd484626c6861e1385b6dd16279a47bafa3fe0e3</citedby><cites>FETCH-LOGICAL-c372t-7b852cc1f71aa978bcd0d1977fd484626c6861e1385b6dd16279a47bafa3fe0e3</cites><orcidid>0000-0002-3996-0549 ; 0000-0002-4845-4867 ; 0000-0003-4640-2323 ; 0000-0003-2935-004X ; 0000-0002-6491-5539 ; 0000-0001-7425-8758 ; 0000-0003-1279-7806</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41477-019-0464-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41477-019-0464-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31285563$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ishikawa, Masaki</creatorcontrib><creatorcontrib>Morishita, Mio</creatorcontrib><creatorcontrib>Higuchi, Yohei</creatorcontrib><creatorcontrib>Ichikawa, Shunsuke</creatorcontrib><creatorcontrib>Ishikawa, Takaaki</creatorcontrib><creatorcontrib>Nishiyama, Tomoaki</creatorcontrib><creatorcontrib>Kabeya, Yukiko</creatorcontrib><creatorcontrib>Hiwatashi, Yuji</creatorcontrib><creatorcontrib>Kurata, Tetsuya</creatorcontrib><creatorcontrib>Kubo, Minoru</creatorcontrib><creatorcontrib>Shigenobu, Shuji</creatorcontrib><creatorcontrib>Tamada, Yosuke</creatorcontrib><creatorcontrib>Sato, Yoshikatsu</creatorcontrib><creatorcontrib>Hasebe, Mitsuyasu</creatorcontrib><title>Physcomitrella STEMIN transcription factor induces stem cell formation with epigenetic reprogramming</title><title>Nature plants</title><addtitle>Nat. Plants</addtitle><addtitle>Nat Plants</addtitle><description>Epigenetic modifications, including histone modifications, stabilize cell-specific gene expression programmes to maintain cell identities in both metazoans and land plants
1
–
3
. Notwithstanding the existence of these stable cell states, in land plants, stem cells are formed from differentiated cells during post-embryonic development and regeneration
4
–
6
, indicating that land plants have an intrinsic ability to regulate epigenetic memory to initiate a new gene regulatory network. However, it is less well understood how epigenetic modifications are locally regulated to influence the specific genes necessary for cellular changes without affecting other genes in a genome. In this study, we found that ectopic induction of the AP2/ERF transcription factor STEMIN1 in leaf cells of the moss
Physcomitrella patens
decreases a repressive chromatin mark, histone H3 lysine 27 trimethylation (H3K27me3), on its direct target genes before cell division, resulting in the conversion of leaf cells to chloronema apical stem cells. STEMIN1 and its homologues positively regulate the formation of secondary chloronema apical stem cells from chloronema cells during development. Our results suggest that STEMIN1 functions within an intrinsic mechanism underlying local H3K27me3 reprogramming to initiate stem cell formation.
In moss, a subgroup of uncharacterized AP2/ERF transcription factors called STEMIN promotes stem cell formation and regeneration, specifically through a repressive chromatin mark on its target genes.</description><subject>14/28</subject><subject>14/34</subject><subject>14/35</subject><subject>14/63</subject><subject>38</subject><subject>38/22</subject><subject>38/77</subject><subject>42</subject><subject>45</subject><subject>45/15</subject><subject>45/22</subject><subject>45/23</subject><subject>45/29</subject><subject>45/41</subject><subject>45/90</subject><subject>631/449/2653/2654</subject><subject>631/449/2653/2659</subject><subject>82</subject><subject>Biomedical and Life Sciences</subject><subject>Bryopsida - genetics</subject><subject>Bryopsida - growth & development</subject><subject>Bryopsida - metabolism</subject><subject>Cell division</subject><subject>Cellular Reprogramming</subject><subject>Embryonic growth stage</subject><subject>Epigenesis, Genetic</subject><subject>Epigenetics</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Plant</subject><subject>Histones - genetics</subject><subject>Histones - metabolism</subject><subject>Leaves</subject><subject>Letter</subject><subject>Life Sciences</subject><subject>Methylation</subject><subject>Plant Leaves - genetics</subject><subject>Plant Leaves - growth & development</subject><subject>Plant Leaves - metabolism</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plant Sciences</subject><subject>Stem cells</subject><subject>Stem Cells - cytology</subject><subject>Stem Cells - metabolism</subject><subject>Transcription factors</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><issn>2055-0278</issn><issn>2055-0278</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kUlLBDEQhYMoKuoP8CIBL15aU9nnKOIGbqCeQzqdHiPT3WOSRvz3Zhw3BE9VUF-9etRDaBfIIRCmjxIHrlRFYFIRLnlFV9AmJUJUhCq9-qvfQDspPRNCQAnBJFlHGwyoFkKyTdTcPb0lN3QhRz-bWXz_cHp9eYNztH1yMcxzGHrcWpeHiEPfjM4nnLLvsCs4bofY2Q_kNeQn7Odh6nufg8PRz-MwjbbrQj_dRmutnSW_81m30OPZ6cPJRXV1e355cnxVOaZorlStBXUOWgXWTpSuXUMamCjVNlxzSaWTWoIHpkUtmwYkVRPLVW1by1pPPNtCB0vdcvtl9CmbLqSFUdv7YUyGUsEFEKJEQff_oM_DGPvibkExDZwTKBQsKReHlKJvzTyGzsY3A8QsUjDLFExJwSxSMLTs7H0qj3Xnm--Nr58XgC6BVEb91Mef0_-rvgN0dpLZ</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Ishikawa, Masaki</creator><creator>Morishita, Mio</creator><creator>Higuchi, Yohei</creator><creator>Ichikawa, Shunsuke</creator><creator>Ishikawa, Takaaki</creator><creator>Nishiyama, Tomoaki</creator><creator>Kabeya, Yukiko</creator><creator>Hiwatashi, Yuji</creator><creator>Kurata, Tetsuya</creator><creator>Kubo, Minoru</creator><creator>Shigenobu, Shuji</creator><creator>Tamada, Yosuke</creator><creator>Sato, Yoshikatsu</creator><creator>Hasebe, Mitsuyasu</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3996-0549</orcidid><orcidid>https://orcid.org/0000-0002-4845-4867</orcidid><orcidid>https://orcid.org/0000-0003-4640-2323</orcidid><orcidid>https://orcid.org/0000-0003-2935-004X</orcidid><orcidid>https://orcid.org/0000-0002-6491-5539</orcidid><orcidid>https://orcid.org/0000-0001-7425-8758</orcidid><orcidid>https://orcid.org/0000-0003-1279-7806</orcidid></search><sort><creationdate>20190701</creationdate><title>Physcomitrella STEMIN transcription factor induces stem cell formation with epigenetic reprogramming</title><author>Ishikawa, Masaki ; Morishita, Mio ; Higuchi, Yohei ; Ichikawa, Shunsuke ; Ishikawa, Takaaki ; Nishiyama, Tomoaki ; Kabeya, Yukiko ; Hiwatashi, Yuji ; Kurata, Tetsuya ; Kubo, Minoru ; Shigenobu, Shuji ; Tamada, Yosuke ; Sato, Yoshikatsu ; Hasebe, Mitsuyasu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-7b852cc1f71aa978bcd0d1977fd484626c6861e1385b6dd16279a47bafa3fe0e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>14/28</topic><topic>14/34</topic><topic>14/35</topic><topic>14/63</topic><topic>38</topic><topic>38/22</topic><topic>38/77</topic><topic>42</topic><topic>45</topic><topic>45/15</topic><topic>45/22</topic><topic>45/23</topic><topic>45/29</topic><topic>45/41</topic><topic>45/90</topic><topic>631/449/2653/2654</topic><topic>631/449/2653/2659</topic><topic>82</topic><topic>Biomedical and Life Sciences</topic><topic>Bryopsida - genetics</topic><topic>Bryopsida - growth & development</topic><topic>Bryopsida - metabolism</topic><topic>Cell division</topic><topic>Cellular Reprogramming</topic><topic>Embryonic growth stage</topic><topic>Epigenesis, Genetic</topic><topic>Epigenetics</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Plant</topic><topic>Histones - genetics</topic><topic>Histones - metabolism</topic><topic>Leaves</topic><topic>Letter</topic><topic>Life Sciences</topic><topic>Methylation</topic><topic>Plant Leaves - genetics</topic><topic>Plant Leaves - growth & development</topic><topic>Plant Leaves - metabolism</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plant Sciences</topic><topic>Stem cells</topic><topic>Stem Cells - cytology</topic><topic>Stem Cells - metabolism</topic><topic>Transcription factors</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ishikawa, Masaki</creatorcontrib><creatorcontrib>Morishita, Mio</creatorcontrib><creatorcontrib>Higuchi, Yohei</creatorcontrib><creatorcontrib>Ichikawa, Shunsuke</creatorcontrib><creatorcontrib>Ishikawa, Takaaki</creatorcontrib><creatorcontrib>Nishiyama, Tomoaki</creatorcontrib><creatorcontrib>Kabeya, Yukiko</creatorcontrib><creatorcontrib>Hiwatashi, Yuji</creatorcontrib><creatorcontrib>Kurata, Tetsuya</creatorcontrib><creatorcontrib>Kubo, Minoru</creatorcontrib><creatorcontrib>Shigenobu, Shuji</creatorcontrib><creatorcontrib>Tamada, Yosuke</creatorcontrib><creatorcontrib>Sato, Yoshikatsu</creatorcontrib><creatorcontrib>Hasebe, Mitsuyasu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Nature plants</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ishikawa, Masaki</au><au>Morishita, Mio</au><au>Higuchi, Yohei</au><au>Ichikawa, Shunsuke</au><au>Ishikawa, Takaaki</au><au>Nishiyama, Tomoaki</au><au>Kabeya, Yukiko</au><au>Hiwatashi, Yuji</au><au>Kurata, Tetsuya</au><au>Kubo, Minoru</au><au>Shigenobu, Shuji</au><au>Tamada, Yosuke</au><au>Sato, Yoshikatsu</au><au>Hasebe, Mitsuyasu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physcomitrella STEMIN transcription factor induces stem cell formation with epigenetic reprogramming</atitle><jtitle>Nature plants</jtitle><stitle>Nat. Plants</stitle><addtitle>Nat Plants</addtitle><date>2019-07-01</date><risdate>2019</risdate><volume>5</volume><issue>7</issue><spage>681</spage><epage>690</epage><pages>681-690</pages><issn>2055-0278</issn><eissn>2055-0278</eissn><abstract>Epigenetic modifications, including histone modifications, stabilize cell-specific gene expression programmes to maintain cell identities in both metazoans and land plants
1
–
3
. Notwithstanding the existence of these stable cell states, in land plants, stem cells are formed from differentiated cells during post-embryonic development and regeneration
4
–
6
, indicating that land plants have an intrinsic ability to regulate epigenetic memory to initiate a new gene regulatory network. However, it is less well understood how epigenetic modifications are locally regulated to influence the specific genes necessary for cellular changes without affecting other genes in a genome. In this study, we found that ectopic induction of the AP2/ERF transcription factor STEMIN1 in leaf cells of the moss
Physcomitrella patens
decreases a repressive chromatin mark, histone H3 lysine 27 trimethylation (H3K27me3), on its direct target genes before cell division, resulting in the conversion of leaf cells to chloronema apical stem cells. STEMIN1 and its homologues positively regulate the formation of secondary chloronema apical stem cells from chloronema cells during development. Our results suggest that STEMIN1 functions within an intrinsic mechanism underlying local H3K27me3 reprogramming to initiate stem cell formation.
In moss, a subgroup of uncharacterized AP2/ERF transcription factors called STEMIN promotes stem cell formation and regeneration, specifically through a repressive chromatin mark on its target genes.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31285563</pmid><doi>10.1038/s41477-019-0464-2</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3996-0549</orcidid><orcidid>https://orcid.org/0000-0002-4845-4867</orcidid><orcidid>https://orcid.org/0000-0003-4640-2323</orcidid><orcidid>https://orcid.org/0000-0003-2935-004X</orcidid><orcidid>https://orcid.org/0000-0002-6491-5539</orcidid><orcidid>https://orcid.org/0000-0001-7425-8758</orcidid><orcidid>https://orcid.org/0000-0003-1279-7806</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2055-0278 |
ispartof | Nature plants, 2019-07, Vol.5 (7), p.681-690 |
issn | 2055-0278 2055-0278 |
language | eng |
recordid | cdi_proquest_miscellaneous_2254510075 |
source | MEDLINE; Nature; SpringerNature Journals |
subjects | 14/28 14/34 14/35 14/63 38 38/22 38/77 42 45 45/15 45/22 45/23 45/29 45/41 45/90 631/449/2653/2654 631/449/2653/2659 82 Biomedical and Life Sciences Bryopsida - genetics Bryopsida - growth & development Bryopsida - metabolism Cell division Cellular Reprogramming Embryonic growth stage Epigenesis, Genetic Epigenetics Gene expression Gene Expression Regulation, Plant Histones - genetics Histones - metabolism Leaves Letter Life Sciences Methylation Plant Leaves - genetics Plant Leaves - growth & development Plant Leaves - metabolism Plant Proteins - genetics Plant Proteins - metabolism Plant Sciences Stem cells Stem Cells - cytology Stem Cells - metabolism Transcription factors Transcription Factors - genetics Transcription Factors - metabolism |
title | Physcomitrella STEMIN transcription factor induces stem cell formation with epigenetic reprogramming |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T23%3A21%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physcomitrella%20STEMIN%20transcription%20factor%20induces%20stem%20cell%20formation%20with%20epigenetic%20reprogramming&rft.jtitle=Nature%20plants&rft.au=Ishikawa,%20Masaki&rft.date=2019-07-01&rft.volume=5&rft.issue=7&rft.spage=681&rft.epage=690&rft.pages=681-690&rft.issn=2055-0278&rft.eissn=2055-0278&rft_id=info:doi/10.1038/s41477-019-0464-2&rft_dat=%3Cproquest_cross%3E2254510075%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2253814401&rft_id=info:pmid/31285563&rfr_iscdi=true |