Colossal infrared and terahertz magneto-optical activity in a two-dimensional Dirac material

When two-dimensional electron gases (2DEGs) are exposed to a magnetic field, they resonantly absorb electromagnetic radiation via electronic transitions between Landau levels 1 . In 2DEGs with a Dirac spectrum, such as graphene, theory predicts an exceptionally high infrared magneto-absorption, even...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature nanotechnology 2019-08, Vol.14 (8), p.756-761
Hauptverfasser: Nedoliuk, Ievgeniia O., Hu, Sheng, Geim, Andre K., Kuzmenko, Alexey B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 761
container_issue 8
container_start_page 756
container_title Nature nanotechnology
container_volume 14
creator Nedoliuk, Ievgeniia O.
Hu, Sheng
Geim, Andre K.
Kuzmenko, Alexey B.
description When two-dimensional electron gases (2DEGs) are exposed to a magnetic field, they resonantly absorb electromagnetic radiation via electronic transitions between Landau levels 1 . In 2DEGs with a Dirac spectrum, such as graphene, theory predicts an exceptionally high infrared magneto-absorption, even at zero doping 2 – 5 . However, the measured Landau-level magneto-optical effects in graphene have been much weaker than expected 2 , 6 – 12 because of imperfections in the samples available for such experiments. Here, we measure magneto-transmission and Faraday rotation in high-mobility encapsulated monolayer graphene using a custom-designed set-up for magneto-infrared microspectroscopy. Our results show strongly enhanced magneto-optical activity in the infrared and terahertz ranges, characterized by absorption of light near to the 50% maximum allowed, 100% magnetic circular dichroism and high Faraday rotation. Considering that sizeable effects have been already observed at routinely achievable magnetic fields, our findings demonstrate the potential of magnetic tuning in 2D Dirac materials for long-wavelength optoelectronics and plasmonics. Colossal magneto-optical activity on Landau levels in the mid-infrared and terahertz ranges is observed in high-mobility encapsulated graphene.
doi_str_mv 10.1038/s41565-019-0489-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2254509788</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2268789772</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-63f758f0fd8d13a53ddeccdddfe1fc01bc74548310c94b547ab84090198358753</originalsourceid><addsrcrecordid>eNp1kFFrWyEYhmW0LG22H9CbcqA3u7HVo8bPy5F2baGwm-5uIEY9meGcY6amJfv1NSTLYNArhe95Xz8fhC4ouaaEwU3mVMwEJlRhwkFh-IDOqOSAGVPi5HgHOUHnOa8IEa1q-Uc0YbQFMSPqDP2cxz7mbPomjF0yybvGjK4pPplfPpU_zWCWoy8Rx3UJtmLGlvASyrbyjWnKa8QuDH7MIY51ehuSsTVT88H0n9BpZ_rsPx_OKfrx7e55_oCfvt8_zr8-YcsZFDxjnRTQkc6Bo8wI5py31jnXedpZQhdWcsGBUWIVXwguzQI4UfXbwARIwaboy753neLvjc9FDyFb3_dm9HGTddsKLoiSABW9-g9dxU2qq--oGUhQUraVonvKpion-U6vUxhM2mpK9E693qvXdQe9U693zZeH5s1i8O6Y-Ou6Au0eyHU0Ln369_T7rW-NAo7m</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2268789772</pqid></control><display><type>article</type><title>Colossal infrared and terahertz magneto-optical activity in a two-dimensional Dirac material</title><source>Springer Online Journals Complete</source><source>Nature Journals Online</source><creator>Nedoliuk, Ievgeniia O. ; Hu, Sheng ; Geim, Andre K. ; Kuzmenko, Alexey B.</creator><creatorcontrib>Nedoliuk, Ievgeniia O. ; Hu, Sheng ; Geim, Andre K. ; Kuzmenko, Alexey B.</creatorcontrib><description>When two-dimensional electron gases (2DEGs) are exposed to a magnetic field, they resonantly absorb electromagnetic radiation via electronic transitions between Landau levels 1 . In 2DEGs with a Dirac spectrum, such as graphene, theory predicts an exceptionally high infrared magneto-absorption, even at zero doping 2 – 5 . However, the measured Landau-level magneto-optical effects in graphene have been much weaker than expected 2 , 6 – 12 because of imperfections in the samples available for such experiments. Here, we measure magneto-transmission and Faraday rotation in high-mobility encapsulated monolayer graphene using a custom-designed set-up for magneto-infrared microspectroscopy. Our results show strongly enhanced magneto-optical activity in the infrared and terahertz ranges, characterized by absorption of light near to the 50% maximum allowed, 100% magnetic circular dichroism and high Faraday rotation. Considering that sizeable effects have been already observed at routinely achievable magnetic fields, our findings demonstrate the potential of magnetic tuning in 2D Dirac materials for long-wavelength optoelectronics and plasmonics. Colossal magneto-optical activity on Landau levels in the mid-infrared and terahertz ranges is observed in high-mobility encapsulated graphene.</description><identifier>ISSN: 1748-3387</identifier><identifier>EISSN: 1748-3395</identifier><identifier>DOI: 10.1038/s41565-019-0489-8</identifier><identifier>PMID: 31285609</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766 ; 639/766/1130 ; 639/925 ; Absorption ; Chemistry and Materials Science ; Circular dichroism ; Dichroism ; Electromagnetic radiation ; Electron transitions ; Faraday effect ; Gases ; Graphene ; Infrared absorption ; Letter ; Magnetic fields ; Materials Science ; Nanotechnology ; Nanotechnology and Microengineering ; Optical activity ; Optoelectronics ; Plasmonics</subject><ispartof>Nature nanotechnology, 2019-08, Vol.14 (8), p.756-761</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><rights>Copyright Nature Publishing Group Aug 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-63f758f0fd8d13a53ddeccdddfe1fc01bc74548310c94b547ab84090198358753</citedby><cites>FETCH-LOGICAL-c438t-63f758f0fd8d13a53ddeccdddfe1fc01bc74548310c94b547ab84090198358753</cites><orcidid>0000-0003-2410-0252 ; 0000-0001-9574-6435 ; 0000-0003-2861-8331</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41565-019-0489-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41565-019-0489-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31285609$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nedoliuk, Ievgeniia O.</creatorcontrib><creatorcontrib>Hu, Sheng</creatorcontrib><creatorcontrib>Geim, Andre K.</creatorcontrib><creatorcontrib>Kuzmenko, Alexey B.</creatorcontrib><title>Colossal infrared and terahertz magneto-optical activity in a two-dimensional Dirac material</title><title>Nature nanotechnology</title><addtitle>Nat. Nanotechnol</addtitle><addtitle>Nat Nanotechnol</addtitle><description>When two-dimensional electron gases (2DEGs) are exposed to a magnetic field, they resonantly absorb electromagnetic radiation via electronic transitions between Landau levels 1 . In 2DEGs with a Dirac spectrum, such as graphene, theory predicts an exceptionally high infrared magneto-absorption, even at zero doping 2 – 5 . However, the measured Landau-level magneto-optical effects in graphene have been much weaker than expected 2 , 6 – 12 because of imperfections in the samples available for such experiments. Here, we measure magneto-transmission and Faraday rotation in high-mobility encapsulated monolayer graphene using a custom-designed set-up for magneto-infrared microspectroscopy. Our results show strongly enhanced magneto-optical activity in the infrared and terahertz ranges, characterized by absorption of light near to the 50% maximum allowed, 100% magnetic circular dichroism and high Faraday rotation. Considering that sizeable effects have been already observed at routinely achievable magnetic fields, our findings demonstrate the potential of magnetic tuning in 2D Dirac materials for long-wavelength optoelectronics and plasmonics. Colossal magneto-optical activity on Landau levels in the mid-infrared and terahertz ranges is observed in high-mobility encapsulated graphene.</description><subject>639/766</subject><subject>639/766/1130</subject><subject>639/925</subject><subject>Absorption</subject><subject>Chemistry and Materials Science</subject><subject>Circular dichroism</subject><subject>Dichroism</subject><subject>Electromagnetic radiation</subject><subject>Electron transitions</subject><subject>Faraday effect</subject><subject>Gases</subject><subject>Graphene</subject><subject>Infrared absorption</subject><subject>Letter</subject><subject>Magnetic fields</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><subject>Optical activity</subject><subject>Optoelectronics</subject><subject>Plasmonics</subject><issn>1748-3387</issn><issn>1748-3395</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kFFrWyEYhmW0LG22H9CbcqA3u7HVo8bPy5F2baGwm-5uIEY9meGcY6amJfv1NSTLYNArhe95Xz8fhC4ouaaEwU3mVMwEJlRhwkFh-IDOqOSAGVPi5HgHOUHnOa8IEa1q-Uc0YbQFMSPqDP2cxz7mbPomjF0yybvGjK4pPplfPpU_zWCWoy8Rx3UJtmLGlvASyrbyjWnKa8QuDH7MIY51ehuSsTVT88H0n9BpZ_rsPx_OKfrx7e55_oCfvt8_zr8-YcsZFDxjnRTQkc6Bo8wI5py31jnXedpZQhdWcsGBUWIVXwguzQI4UfXbwARIwaboy753neLvjc9FDyFb3_dm9HGTddsKLoiSABW9-g9dxU2qq--oGUhQUraVonvKpion-U6vUxhM2mpK9E693qvXdQe9U693zZeH5s1i8O6Y-Ou6Au0eyHU0Ln369_T7rW-NAo7m</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Nedoliuk, Ievgeniia O.</creator><creator>Hu, Sheng</creator><creator>Geim, Andre K.</creator><creator>Kuzmenko, Alexey B.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2410-0252</orcidid><orcidid>https://orcid.org/0000-0001-9574-6435</orcidid><orcidid>https://orcid.org/0000-0003-2861-8331</orcidid></search><sort><creationdate>20190801</creationdate><title>Colossal infrared and terahertz magneto-optical activity in a two-dimensional Dirac material</title><author>Nedoliuk, Ievgeniia O. ; Hu, Sheng ; Geim, Andre K. ; Kuzmenko, Alexey B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-63f758f0fd8d13a53ddeccdddfe1fc01bc74548310c94b547ab84090198358753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>639/766</topic><topic>639/766/1130</topic><topic>639/925</topic><topic>Absorption</topic><topic>Chemistry and Materials Science</topic><topic>Circular dichroism</topic><topic>Dichroism</topic><topic>Electromagnetic radiation</topic><topic>Electron transitions</topic><topic>Faraday effect</topic><topic>Gases</topic><topic>Graphene</topic><topic>Infrared absorption</topic><topic>Letter</topic><topic>Magnetic fields</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><topic>Optical activity</topic><topic>Optoelectronics</topic><topic>Plasmonics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nedoliuk, Ievgeniia O.</creatorcontrib><creatorcontrib>Hu, Sheng</creatorcontrib><creatorcontrib>Geim, Andre K.</creatorcontrib><creatorcontrib>Kuzmenko, Alexey B.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Nature nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nedoliuk, Ievgeniia O.</au><au>Hu, Sheng</au><au>Geim, Andre K.</au><au>Kuzmenko, Alexey B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Colossal infrared and terahertz magneto-optical activity in a two-dimensional Dirac material</atitle><jtitle>Nature nanotechnology</jtitle><stitle>Nat. Nanotechnol</stitle><addtitle>Nat Nanotechnol</addtitle><date>2019-08-01</date><risdate>2019</risdate><volume>14</volume><issue>8</issue><spage>756</spage><epage>761</epage><pages>756-761</pages><issn>1748-3387</issn><eissn>1748-3395</eissn><abstract>When two-dimensional electron gases (2DEGs) are exposed to a magnetic field, they resonantly absorb electromagnetic radiation via electronic transitions between Landau levels 1 . In 2DEGs with a Dirac spectrum, such as graphene, theory predicts an exceptionally high infrared magneto-absorption, even at zero doping 2 – 5 . However, the measured Landau-level magneto-optical effects in graphene have been much weaker than expected 2 , 6 – 12 because of imperfections in the samples available for such experiments. Here, we measure magneto-transmission and Faraday rotation in high-mobility encapsulated monolayer graphene using a custom-designed set-up for magneto-infrared microspectroscopy. Our results show strongly enhanced magneto-optical activity in the infrared and terahertz ranges, characterized by absorption of light near to the 50% maximum allowed, 100% magnetic circular dichroism and high Faraday rotation. Considering that sizeable effects have been already observed at routinely achievable magnetic fields, our findings demonstrate the potential of magnetic tuning in 2D Dirac materials for long-wavelength optoelectronics and plasmonics. Colossal magneto-optical activity on Landau levels in the mid-infrared and terahertz ranges is observed in high-mobility encapsulated graphene.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31285609</pmid><doi>10.1038/s41565-019-0489-8</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-2410-0252</orcidid><orcidid>https://orcid.org/0000-0001-9574-6435</orcidid><orcidid>https://orcid.org/0000-0003-2861-8331</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1748-3387
ispartof Nature nanotechnology, 2019-08, Vol.14 (8), p.756-761
issn 1748-3387
1748-3395
language eng
recordid cdi_proquest_miscellaneous_2254509788
source Springer Online Journals Complete; Nature Journals Online
subjects 639/766
639/766/1130
639/925
Absorption
Chemistry and Materials Science
Circular dichroism
Dichroism
Electromagnetic radiation
Electron transitions
Faraday effect
Gases
Graphene
Infrared absorption
Letter
Magnetic fields
Materials Science
Nanotechnology
Nanotechnology and Microengineering
Optical activity
Optoelectronics
Plasmonics
title Colossal infrared and terahertz magneto-optical activity in a two-dimensional Dirac material
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T18%3A02%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Colossal%20infrared%20and%20terahertz%20magneto-optical%20activity%20in%20a%20two-dimensional%20Dirac%20material&rft.jtitle=Nature%20nanotechnology&rft.au=Nedoliuk,%20Ievgeniia%20O.&rft.date=2019-08-01&rft.volume=14&rft.issue=8&rft.spage=756&rft.epage=761&rft.pages=756-761&rft.issn=1748-3387&rft.eissn=1748-3395&rft_id=info:doi/10.1038/s41565-019-0489-8&rft_dat=%3Cproquest_cross%3E2268789772%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2268789772&rft_id=info:pmid/31285609&rfr_iscdi=true