Fabrication of a polycarbonate microdevice and boronic acid-mediated surface modification for on-chip sample purification and amplification of foodborne pathogens
In this study, we integrated sample purification and genetic amplification in a seamless polycarbonate microdevice to facilitate foodborne pathogen detection. The sample purification process was realized based on the increased affinity of the boronic acid-modified surface toward the cis -diol group...
Gespeichert in:
Veröffentlicht in: | Biomedical microdevices 2019-09, Vol.21 (3), p.72-10, Article 72 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10 |
---|---|
container_issue | 3 |
container_start_page | 72 |
container_title | Biomedical microdevices |
container_volume | 21 |
creator | La, Hoang Chau Lee, Nae Yoon |
description | In this study, we integrated sample purification and genetic amplification in a seamless polycarbonate microdevice to facilitate foodborne pathogen detection. The sample purification process was realized based on the increased affinity of the boronic acid-modified surface toward the
cis
-diol group present on the bacterial outer membrane. The modification procedure was conducted at room temperature using disposable syringe. The visible color and fluorescence signals of alizarin red sodium were used to confirm the success of the surface modification process.
Escherichia coli
O157:H7 containing green fluorescence protein (GFP) and
Staphylococcus aureus
were chosen as the microbial models to demonstrate the nonspecific immobilization using the microdevice. Bacterial solutions of various concentrations were injected into the microdevice at three flow rates to optimize the operation conditions. This microdevice successfully amplified the 384-bp fragment of the
eae
A gene of the captured
E. coli
O157:H7 within 1 h. Its detection limit for
E. coli
O157:H7 was determined to be 1 × 10
3
colony-forming units per milliliter (CFU mL
−1
). The proposed microdevice serves as a monolithic platform for facile and on-site identification of major foodborne pathogens. |
doi_str_mv | 10.1007/s10544-019-0420-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2254507181</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2254507181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-969bd9c918ace4a8672f80e954e80a90ddbc5a24f3710b473099d3f7a6dfc8843</originalsourceid><addsrcrecordid>eNp1kctq3TAQhkVIya19gG6KIJtu1EqyrMuyhCYpBLpp10LWJVGwJVeyA-d1-qSVOUkOBLqSmPnm_4f5AfhI8BeCsfhaCe4ZQ5gohBnFaHcEzkgvKJJCkuP276RAlAh-Cs5rfcQN5JyfgNOOUMkpo2fg77UZSrRmiTnBHKCBcx531pQhJ7N4OEVbsvNP0XpokoNDLjlFC42NDk3exQY5WNcSTCOm7GJ4UQu5wJyQfYgzrGaaRw_ntRz6m9xWPlSaf8jZNY_UWLM85Huf6nvwLpix-g_P7wX4ff3919Utuvt58-Pq2x2yDKsFKa4Gp6wism3CjOSCBom96pmX2Cjs3GB7Q1noBMEDEx1WynVBGO6ClZJ1F-DzXncu-c_q66KnWK0fR5N8XqumtGc9FkSShl6-QR_zWlLbbqM6rjDrNkGyp9oJay0-6LnEyZSdJlhvAep9gLrlorcA9a7NfHpWXod23teJl8QaQPdAba1078vB-v-q_wB6q6n7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2253690434</pqid></control><display><type>article</type><title>Fabrication of a polycarbonate microdevice and boronic acid-mediated surface modification for on-chip sample purification and amplification of foodborne pathogens</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>La, Hoang Chau ; Lee, Nae Yoon</creator><creatorcontrib>La, Hoang Chau ; Lee, Nae Yoon</creatorcontrib><description>In this study, we integrated sample purification and genetic amplification in a seamless polycarbonate microdevice to facilitate foodborne pathogen detection. The sample purification process was realized based on the increased affinity of the boronic acid-modified surface toward the
cis
-diol group present on the bacterial outer membrane. The modification procedure was conducted at room temperature using disposable syringe. The visible color and fluorescence signals of alizarin red sodium were used to confirm the success of the surface modification process.
Escherichia coli
O157:H7 containing green fluorescence protein (GFP) and
Staphylococcus aureus
were chosen as the microbial models to demonstrate the nonspecific immobilization using the microdevice. Bacterial solutions of various concentrations were injected into the microdevice at three flow rates to optimize the operation conditions. This microdevice successfully amplified the 384-bp fragment of the
eae
A gene of the captured
E. coli
O157:H7 within 1 h. Its detection limit for
E. coli
O157:H7 was determined to be 1 × 10
3
colony-forming units per milliliter (CFU mL
−1
). The proposed microdevice serves as a monolithic platform for facile and on-site identification of major foodborne pathogens.</description><identifier>ISSN: 1387-2176</identifier><identifier>EISSN: 1572-8781</identifier><identifier>DOI: 10.1007/s10544-019-0420-y</identifier><identifier>PMID: 31286242</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Acids ; Alizarin ; Amplification ; Analytic Sample Preparation Methods - instrumentation ; Biological and Medical Physics ; Biomedical Engineering and Bioengineering ; Biophysics ; Boronic Acids - chemistry ; E coli ; Engineering ; Engineering Fluid Dynamics ; Escherichia coli O157 - genetics ; Escherichia coli O157 - isolation & purification ; Fabrication ; Flow velocity ; Fluorescence ; Food Microbiology ; Foodborne pathogens ; Immobilization ; Lab-On-A-Chip Devices ; Limit of Detection ; Microorganisms ; Nanotechnology ; Pathogens ; Polycarbonate ; Polycarboxylate Cement - chemistry ; Polymerase Chain Reaction - instrumentation ; Purification ; Sodium ; Staphylococcus aureus - genetics ; Staphylococcus aureus - isolation & purification ; Surface Properties ; Temperature</subject><ispartof>Biomedical microdevices, 2019-09, Vol.21 (3), p.72-10, Article 72</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Biomedical Microdevices is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-969bd9c918ace4a8672f80e954e80a90ddbc5a24f3710b473099d3f7a6dfc8843</citedby><cites>FETCH-LOGICAL-c409t-969bd9c918ace4a8672f80e954e80a90ddbc5a24f3710b473099d3f7a6dfc8843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10544-019-0420-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10544-019-0420-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31286242$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>La, Hoang Chau</creatorcontrib><creatorcontrib>Lee, Nae Yoon</creatorcontrib><title>Fabrication of a polycarbonate microdevice and boronic acid-mediated surface modification for on-chip sample purification and amplification of foodborne pathogens</title><title>Biomedical microdevices</title><addtitle>Biomed Microdevices</addtitle><addtitle>Biomed Microdevices</addtitle><description>In this study, we integrated sample purification and genetic amplification in a seamless polycarbonate microdevice to facilitate foodborne pathogen detection. The sample purification process was realized based on the increased affinity of the boronic acid-modified surface toward the
cis
-diol group present on the bacterial outer membrane. The modification procedure was conducted at room temperature using disposable syringe. The visible color and fluorescence signals of alizarin red sodium were used to confirm the success of the surface modification process.
Escherichia coli
O157:H7 containing green fluorescence protein (GFP) and
Staphylococcus aureus
were chosen as the microbial models to demonstrate the nonspecific immobilization using the microdevice. Bacterial solutions of various concentrations were injected into the microdevice at three flow rates to optimize the operation conditions. This microdevice successfully amplified the 384-bp fragment of the
eae
A gene of the captured
E. coli
O157:H7 within 1 h. Its detection limit for
E. coli
O157:H7 was determined to be 1 × 10
3
colony-forming units per milliliter (CFU mL
−1
). The proposed microdevice serves as a monolithic platform for facile and on-site identification of major foodborne pathogens.</description><subject>Acids</subject><subject>Alizarin</subject><subject>Amplification</subject><subject>Analytic Sample Preparation Methods - instrumentation</subject><subject>Biological and Medical Physics</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biophysics</subject><subject>Boronic Acids - chemistry</subject><subject>E coli</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Escherichia coli O157 - genetics</subject><subject>Escherichia coli O157 - isolation & purification</subject><subject>Fabrication</subject><subject>Flow velocity</subject><subject>Fluorescence</subject><subject>Food Microbiology</subject><subject>Foodborne pathogens</subject><subject>Immobilization</subject><subject>Lab-On-A-Chip Devices</subject><subject>Limit of Detection</subject><subject>Microorganisms</subject><subject>Nanotechnology</subject><subject>Pathogens</subject><subject>Polycarbonate</subject><subject>Polycarboxylate Cement - chemistry</subject><subject>Polymerase Chain Reaction - instrumentation</subject><subject>Purification</subject><subject>Sodium</subject><subject>Staphylococcus aureus - genetics</subject><subject>Staphylococcus aureus - isolation & purification</subject><subject>Surface Properties</subject><subject>Temperature</subject><issn>1387-2176</issn><issn>1572-8781</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kctq3TAQhkVIya19gG6KIJtu1EqyrMuyhCYpBLpp10LWJVGwJVeyA-d1-qSVOUkOBLqSmPnm_4f5AfhI8BeCsfhaCe4ZQ5gohBnFaHcEzkgvKJJCkuP276RAlAh-Cs5rfcQN5JyfgNOOUMkpo2fg77UZSrRmiTnBHKCBcx531pQhJ7N4OEVbsvNP0XpokoNDLjlFC42NDk3exQY5WNcSTCOm7GJ4UQu5wJyQfYgzrGaaRw_ntRz6m9xWPlSaf8jZNY_UWLM85Huf6nvwLpix-g_P7wX4ff3919Utuvt58-Pq2x2yDKsFKa4Gp6wism3CjOSCBom96pmX2Cjs3GB7Q1noBMEDEx1WynVBGO6ClZJ1F-DzXncu-c_q66KnWK0fR5N8XqumtGc9FkSShl6-QR_zWlLbbqM6rjDrNkGyp9oJay0-6LnEyZSdJlhvAep9gLrlorcA9a7NfHpWXod23teJl8QaQPdAba1078vB-v-q_wB6q6n7</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>La, Hoang Chau</creator><creator>Lee, Nae Yoon</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7RV</scope><scope>7SP</scope><scope>7TB</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20190901</creationdate><title>Fabrication of a polycarbonate microdevice and boronic acid-mediated surface modification for on-chip sample purification and amplification of foodborne pathogens</title><author>La, Hoang Chau ; Lee, Nae Yoon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-969bd9c918ace4a8672f80e954e80a90ddbc5a24f3710b473099d3f7a6dfc8843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acids</topic><topic>Alizarin</topic><topic>Amplification</topic><topic>Analytic Sample Preparation Methods - instrumentation</topic><topic>Biological and Medical Physics</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biophysics</topic><topic>Boronic Acids - chemistry</topic><topic>E coli</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Escherichia coli O157 - genetics</topic><topic>Escherichia coli O157 - isolation & purification</topic><topic>Fabrication</topic><topic>Flow velocity</topic><topic>Fluorescence</topic><topic>Food Microbiology</topic><topic>Foodborne pathogens</topic><topic>Immobilization</topic><topic>Lab-On-A-Chip Devices</topic><topic>Limit of Detection</topic><topic>Microorganisms</topic><topic>Nanotechnology</topic><topic>Pathogens</topic><topic>Polycarbonate</topic><topic>Polycarboxylate Cement - chemistry</topic><topic>Polymerase Chain Reaction - instrumentation</topic><topic>Purification</topic><topic>Sodium</topic><topic>Staphylococcus aureus - genetics</topic><topic>Staphylococcus aureus - isolation & purification</topic><topic>Surface Properties</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>La, Hoang Chau</creatorcontrib><creatorcontrib>Lee, Nae Yoon</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Biomedical microdevices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>La, Hoang Chau</au><au>Lee, Nae Yoon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication of a polycarbonate microdevice and boronic acid-mediated surface modification for on-chip sample purification and amplification of foodborne pathogens</atitle><jtitle>Biomedical microdevices</jtitle><stitle>Biomed Microdevices</stitle><addtitle>Biomed Microdevices</addtitle><date>2019-09-01</date><risdate>2019</risdate><volume>21</volume><issue>3</issue><spage>72</spage><epage>10</epage><pages>72-10</pages><artnum>72</artnum><issn>1387-2176</issn><eissn>1572-8781</eissn><abstract>In this study, we integrated sample purification and genetic amplification in a seamless polycarbonate microdevice to facilitate foodborne pathogen detection. The sample purification process was realized based on the increased affinity of the boronic acid-modified surface toward the
cis
-diol group present on the bacterial outer membrane. The modification procedure was conducted at room temperature using disposable syringe. The visible color and fluorescence signals of alizarin red sodium were used to confirm the success of the surface modification process.
Escherichia coli
O157:H7 containing green fluorescence protein (GFP) and
Staphylococcus aureus
were chosen as the microbial models to demonstrate the nonspecific immobilization using the microdevice. Bacterial solutions of various concentrations were injected into the microdevice at three flow rates to optimize the operation conditions. This microdevice successfully amplified the 384-bp fragment of the
eae
A gene of the captured
E. coli
O157:H7 within 1 h. Its detection limit for
E. coli
O157:H7 was determined to be 1 × 10
3
colony-forming units per milliliter (CFU mL
−1
). The proposed microdevice serves as a monolithic platform for facile and on-site identification of major foodborne pathogens.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>31286242</pmid><doi>10.1007/s10544-019-0420-y</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1387-2176 |
ispartof | Biomedical microdevices, 2019-09, Vol.21 (3), p.72-10, Article 72 |
issn | 1387-2176 1572-8781 |
language | eng |
recordid | cdi_proquest_miscellaneous_2254507181 |
source | MEDLINE; SpringerNature Journals |
subjects | Acids Alizarin Amplification Analytic Sample Preparation Methods - instrumentation Biological and Medical Physics Biomedical Engineering and Bioengineering Biophysics Boronic Acids - chemistry E coli Engineering Engineering Fluid Dynamics Escherichia coli O157 - genetics Escherichia coli O157 - isolation & purification Fabrication Flow velocity Fluorescence Food Microbiology Foodborne pathogens Immobilization Lab-On-A-Chip Devices Limit of Detection Microorganisms Nanotechnology Pathogens Polycarbonate Polycarboxylate Cement - chemistry Polymerase Chain Reaction - instrumentation Purification Sodium Staphylococcus aureus - genetics Staphylococcus aureus - isolation & purification Surface Properties Temperature |
title | Fabrication of a polycarbonate microdevice and boronic acid-mediated surface modification for on-chip sample purification and amplification of foodborne pathogens |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T05%3A19%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20of%20a%20polycarbonate%20microdevice%20and%20boronic%20acid-mediated%20surface%20modification%20for%20on-chip%20sample%20purification%20and%20amplification%20of%20foodborne%20pathogens&rft.jtitle=Biomedical%20microdevices&rft.au=La,%20Hoang%20Chau&rft.date=2019-09-01&rft.volume=21&rft.issue=3&rft.spage=72&rft.epage=10&rft.pages=72-10&rft.artnum=72&rft.issn=1387-2176&rft.eissn=1572-8781&rft_id=info:doi/10.1007/s10544-019-0420-y&rft_dat=%3Cproquest_cross%3E2254507181%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2253690434&rft_id=info:pmid/31286242&rfr_iscdi=true |