Fabrication of a polycarbonate microdevice and boronic acid-mediated surface modification for on-chip sample purification and amplification of foodborne pathogens

In this study, we integrated sample purification and genetic amplification in a seamless polycarbonate microdevice to facilitate foodborne pathogen detection. The sample purification process was realized based on the increased affinity of the boronic acid-modified surface toward the cis -diol group...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomedical microdevices 2019-09, Vol.21 (3), p.72-10, Article 72
Hauptverfasser: La, Hoang Chau, Lee, Nae Yoon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue 3
container_start_page 72
container_title Biomedical microdevices
container_volume 21
creator La, Hoang Chau
Lee, Nae Yoon
description In this study, we integrated sample purification and genetic amplification in a seamless polycarbonate microdevice to facilitate foodborne pathogen detection. The sample purification process was realized based on the increased affinity of the boronic acid-modified surface toward the cis -diol group present on the bacterial outer membrane. The modification procedure was conducted at room temperature using disposable syringe. The visible color and fluorescence signals of alizarin red sodium were used to confirm the success of the surface modification process. Escherichia coli O157:H7 containing green fluorescence protein (GFP) and Staphylococcus aureus were chosen as the microbial models to demonstrate the nonspecific immobilization using the microdevice. Bacterial solutions of various concentrations were injected into the microdevice at three flow rates to optimize the operation conditions. This microdevice successfully amplified the 384-bp fragment of the eae A gene of the captured E. coli O157:H7 within 1 h. Its detection limit for E. coli O157:H7 was determined to be 1 × 10 3 colony-forming units per milliliter (CFU mL −1 ). The proposed microdevice serves as a monolithic platform for facile and on-site identification of major foodborne pathogens.
doi_str_mv 10.1007/s10544-019-0420-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2254507181</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2254507181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-969bd9c918ace4a8672f80e954e80a90ddbc5a24f3710b473099d3f7a6dfc8843</originalsourceid><addsrcrecordid>eNp1kctq3TAQhkVIya19gG6KIJtu1EqyrMuyhCYpBLpp10LWJVGwJVeyA-d1-qSVOUkOBLqSmPnm_4f5AfhI8BeCsfhaCe4ZQ5gohBnFaHcEzkgvKJJCkuP276RAlAh-Cs5rfcQN5JyfgNOOUMkpo2fg77UZSrRmiTnBHKCBcx531pQhJ7N4OEVbsvNP0XpokoNDLjlFC42NDk3exQY5WNcSTCOm7GJ4UQu5wJyQfYgzrGaaRw_ntRz6m9xWPlSaf8jZNY_UWLM85Huf6nvwLpix-g_P7wX4ff3919Utuvt58-Pq2x2yDKsFKa4Gp6wism3CjOSCBom96pmX2Cjs3GB7Q1noBMEDEx1WynVBGO6ClZJ1F-DzXncu-c_q66KnWK0fR5N8XqumtGc9FkSShl6-QR_zWlLbbqM6rjDrNkGyp9oJay0-6LnEyZSdJlhvAep9gLrlorcA9a7NfHpWXod23teJl8QaQPdAba1078vB-v-q_wB6q6n7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2253690434</pqid></control><display><type>article</type><title>Fabrication of a polycarbonate microdevice and boronic acid-mediated surface modification for on-chip sample purification and amplification of foodborne pathogens</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>La, Hoang Chau ; Lee, Nae Yoon</creator><creatorcontrib>La, Hoang Chau ; Lee, Nae Yoon</creatorcontrib><description>In this study, we integrated sample purification and genetic amplification in a seamless polycarbonate microdevice to facilitate foodborne pathogen detection. The sample purification process was realized based on the increased affinity of the boronic acid-modified surface toward the cis -diol group present on the bacterial outer membrane. The modification procedure was conducted at room temperature using disposable syringe. The visible color and fluorescence signals of alizarin red sodium were used to confirm the success of the surface modification process. Escherichia coli O157:H7 containing green fluorescence protein (GFP) and Staphylococcus aureus were chosen as the microbial models to demonstrate the nonspecific immobilization using the microdevice. Bacterial solutions of various concentrations were injected into the microdevice at three flow rates to optimize the operation conditions. This microdevice successfully amplified the 384-bp fragment of the eae A gene of the captured E. coli O157:H7 within 1 h. Its detection limit for E. coli O157:H7 was determined to be 1 × 10 3 colony-forming units per milliliter (CFU mL −1 ). The proposed microdevice serves as a monolithic platform for facile and on-site identification of major foodborne pathogens.</description><identifier>ISSN: 1387-2176</identifier><identifier>EISSN: 1572-8781</identifier><identifier>DOI: 10.1007/s10544-019-0420-y</identifier><identifier>PMID: 31286242</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Acids ; Alizarin ; Amplification ; Analytic Sample Preparation Methods - instrumentation ; Biological and Medical Physics ; Biomedical Engineering and Bioengineering ; Biophysics ; Boronic Acids - chemistry ; E coli ; Engineering ; Engineering Fluid Dynamics ; Escherichia coli O157 - genetics ; Escherichia coli O157 - isolation &amp; purification ; Fabrication ; Flow velocity ; Fluorescence ; Food Microbiology ; Foodborne pathogens ; Immobilization ; Lab-On-A-Chip Devices ; Limit of Detection ; Microorganisms ; Nanotechnology ; Pathogens ; Polycarbonate ; Polycarboxylate Cement - chemistry ; Polymerase Chain Reaction - instrumentation ; Purification ; Sodium ; Staphylococcus aureus - genetics ; Staphylococcus aureus - isolation &amp; purification ; Surface Properties ; Temperature</subject><ispartof>Biomedical microdevices, 2019-09, Vol.21 (3), p.72-10, Article 72</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Biomedical Microdevices is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-969bd9c918ace4a8672f80e954e80a90ddbc5a24f3710b473099d3f7a6dfc8843</citedby><cites>FETCH-LOGICAL-c409t-969bd9c918ace4a8672f80e954e80a90ddbc5a24f3710b473099d3f7a6dfc8843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10544-019-0420-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10544-019-0420-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31286242$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>La, Hoang Chau</creatorcontrib><creatorcontrib>Lee, Nae Yoon</creatorcontrib><title>Fabrication of a polycarbonate microdevice and boronic acid-mediated surface modification for on-chip sample purification and amplification of foodborne pathogens</title><title>Biomedical microdevices</title><addtitle>Biomed Microdevices</addtitle><addtitle>Biomed Microdevices</addtitle><description>In this study, we integrated sample purification and genetic amplification in a seamless polycarbonate microdevice to facilitate foodborne pathogen detection. The sample purification process was realized based on the increased affinity of the boronic acid-modified surface toward the cis -diol group present on the bacterial outer membrane. The modification procedure was conducted at room temperature using disposable syringe. The visible color and fluorescence signals of alizarin red sodium were used to confirm the success of the surface modification process. Escherichia coli O157:H7 containing green fluorescence protein (GFP) and Staphylococcus aureus were chosen as the microbial models to demonstrate the nonspecific immobilization using the microdevice. Bacterial solutions of various concentrations were injected into the microdevice at three flow rates to optimize the operation conditions. This microdevice successfully amplified the 384-bp fragment of the eae A gene of the captured E. coli O157:H7 within 1 h. Its detection limit for E. coli O157:H7 was determined to be 1 × 10 3 colony-forming units per milliliter (CFU mL −1 ). The proposed microdevice serves as a monolithic platform for facile and on-site identification of major foodborne pathogens.</description><subject>Acids</subject><subject>Alizarin</subject><subject>Amplification</subject><subject>Analytic Sample Preparation Methods - instrumentation</subject><subject>Biological and Medical Physics</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biophysics</subject><subject>Boronic Acids - chemistry</subject><subject>E coli</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Escherichia coli O157 - genetics</subject><subject>Escherichia coli O157 - isolation &amp; purification</subject><subject>Fabrication</subject><subject>Flow velocity</subject><subject>Fluorescence</subject><subject>Food Microbiology</subject><subject>Foodborne pathogens</subject><subject>Immobilization</subject><subject>Lab-On-A-Chip Devices</subject><subject>Limit of Detection</subject><subject>Microorganisms</subject><subject>Nanotechnology</subject><subject>Pathogens</subject><subject>Polycarbonate</subject><subject>Polycarboxylate Cement - chemistry</subject><subject>Polymerase Chain Reaction - instrumentation</subject><subject>Purification</subject><subject>Sodium</subject><subject>Staphylococcus aureus - genetics</subject><subject>Staphylococcus aureus - isolation &amp; purification</subject><subject>Surface Properties</subject><subject>Temperature</subject><issn>1387-2176</issn><issn>1572-8781</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kctq3TAQhkVIya19gG6KIJtu1EqyrMuyhCYpBLpp10LWJVGwJVeyA-d1-qSVOUkOBLqSmPnm_4f5AfhI8BeCsfhaCe4ZQ5gohBnFaHcEzkgvKJJCkuP276RAlAh-Cs5rfcQN5JyfgNOOUMkpo2fg77UZSrRmiTnBHKCBcx531pQhJ7N4OEVbsvNP0XpokoNDLjlFC42NDk3exQY5WNcSTCOm7GJ4UQu5wJyQfYgzrGaaRw_ntRz6m9xWPlSaf8jZNY_UWLM85Huf6nvwLpix-g_P7wX4ff3919Utuvt58-Pq2x2yDKsFKa4Gp6wism3CjOSCBom96pmX2Cjs3GB7Q1noBMEDEx1WynVBGO6ClZJ1F-DzXncu-c_q66KnWK0fR5N8XqumtGc9FkSShl6-QR_zWlLbbqM6rjDrNkGyp9oJay0-6LnEyZSdJlhvAep9gLrlorcA9a7NfHpWXod23teJl8QaQPdAba1078vB-v-q_wB6q6n7</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>La, Hoang Chau</creator><creator>Lee, Nae Yoon</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7RV</scope><scope>7SP</scope><scope>7TB</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20190901</creationdate><title>Fabrication of a polycarbonate microdevice and boronic acid-mediated surface modification for on-chip sample purification and amplification of foodborne pathogens</title><author>La, Hoang Chau ; Lee, Nae Yoon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-969bd9c918ace4a8672f80e954e80a90ddbc5a24f3710b473099d3f7a6dfc8843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acids</topic><topic>Alizarin</topic><topic>Amplification</topic><topic>Analytic Sample Preparation Methods - instrumentation</topic><topic>Biological and Medical Physics</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biophysics</topic><topic>Boronic Acids - chemistry</topic><topic>E coli</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Escherichia coli O157 - genetics</topic><topic>Escherichia coli O157 - isolation &amp; purification</topic><topic>Fabrication</topic><topic>Flow velocity</topic><topic>Fluorescence</topic><topic>Food Microbiology</topic><topic>Foodborne pathogens</topic><topic>Immobilization</topic><topic>Lab-On-A-Chip Devices</topic><topic>Limit of Detection</topic><topic>Microorganisms</topic><topic>Nanotechnology</topic><topic>Pathogens</topic><topic>Polycarbonate</topic><topic>Polycarboxylate Cement - chemistry</topic><topic>Polymerase Chain Reaction - instrumentation</topic><topic>Purification</topic><topic>Sodium</topic><topic>Staphylococcus aureus - genetics</topic><topic>Staphylococcus aureus - isolation &amp; purification</topic><topic>Surface Properties</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>La, Hoang Chau</creatorcontrib><creatorcontrib>Lee, Nae Yoon</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Biomedical microdevices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>La, Hoang Chau</au><au>Lee, Nae Yoon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication of a polycarbonate microdevice and boronic acid-mediated surface modification for on-chip sample purification and amplification of foodborne pathogens</atitle><jtitle>Biomedical microdevices</jtitle><stitle>Biomed Microdevices</stitle><addtitle>Biomed Microdevices</addtitle><date>2019-09-01</date><risdate>2019</risdate><volume>21</volume><issue>3</issue><spage>72</spage><epage>10</epage><pages>72-10</pages><artnum>72</artnum><issn>1387-2176</issn><eissn>1572-8781</eissn><abstract>In this study, we integrated sample purification and genetic amplification in a seamless polycarbonate microdevice to facilitate foodborne pathogen detection. The sample purification process was realized based on the increased affinity of the boronic acid-modified surface toward the cis -diol group present on the bacterial outer membrane. The modification procedure was conducted at room temperature using disposable syringe. The visible color and fluorescence signals of alizarin red sodium were used to confirm the success of the surface modification process. Escherichia coli O157:H7 containing green fluorescence protein (GFP) and Staphylococcus aureus were chosen as the microbial models to demonstrate the nonspecific immobilization using the microdevice. Bacterial solutions of various concentrations were injected into the microdevice at three flow rates to optimize the operation conditions. This microdevice successfully amplified the 384-bp fragment of the eae A gene of the captured E. coli O157:H7 within 1 h. Its detection limit for E. coli O157:H7 was determined to be 1 × 10 3 colony-forming units per milliliter (CFU mL −1 ). The proposed microdevice serves as a monolithic platform for facile and on-site identification of major foodborne pathogens.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>31286242</pmid><doi>10.1007/s10544-019-0420-y</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1387-2176
ispartof Biomedical microdevices, 2019-09, Vol.21 (3), p.72-10, Article 72
issn 1387-2176
1572-8781
language eng
recordid cdi_proquest_miscellaneous_2254507181
source MEDLINE; SpringerNature Journals
subjects Acids
Alizarin
Amplification
Analytic Sample Preparation Methods - instrumentation
Biological and Medical Physics
Biomedical Engineering and Bioengineering
Biophysics
Boronic Acids - chemistry
E coli
Engineering
Engineering Fluid Dynamics
Escherichia coli O157 - genetics
Escherichia coli O157 - isolation & purification
Fabrication
Flow velocity
Fluorescence
Food Microbiology
Foodborne pathogens
Immobilization
Lab-On-A-Chip Devices
Limit of Detection
Microorganisms
Nanotechnology
Pathogens
Polycarbonate
Polycarboxylate Cement - chemistry
Polymerase Chain Reaction - instrumentation
Purification
Sodium
Staphylococcus aureus - genetics
Staphylococcus aureus - isolation & purification
Surface Properties
Temperature
title Fabrication of a polycarbonate microdevice and boronic acid-mediated surface modification for on-chip sample purification and amplification of foodborne pathogens
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T05%3A19%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20of%20a%20polycarbonate%20microdevice%20and%20boronic%20acid-mediated%20surface%20modification%20for%20on-chip%20sample%20purification%20and%20amplification%20of%20foodborne%20pathogens&rft.jtitle=Biomedical%20microdevices&rft.au=La,%20Hoang%20Chau&rft.date=2019-09-01&rft.volume=21&rft.issue=3&rft.spage=72&rft.epage=10&rft.pages=72-10&rft.artnum=72&rft.issn=1387-2176&rft.eissn=1572-8781&rft_id=info:doi/10.1007/s10544-019-0420-y&rft_dat=%3Cproquest_cross%3E2254507181%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2253690434&rft_id=info:pmid/31286242&rfr_iscdi=true