Relative Saliency and Ranking: Models, Metrics, Data and Benchmarks

Salient object detection is a problem that has been considered in detail and many solutions have been proposed. In this paper, we argue that work to date has addressed a problem that is relatively ill-posed. Specifically, there is not universal agreement about what constitutes a salient object when...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2021-01, Vol.43 (1), p.204-219
Hauptverfasser: Kalash, Mahmoud, Islam, Md Amirul, Bruce, Neil D. B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 219
container_issue 1
container_start_page 204
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume 43
creator Kalash, Mahmoud
Islam, Md Amirul
Bruce, Neil D. B.
description Salient object detection is a problem that has been considered in detail and many solutions have been proposed. In this paper, we argue that work to date has addressed a problem that is relatively ill-posed. Specifically, there is not universal agreement about what constitutes a salient object when multiple observers are queried. This implies that some objects are more likely to be judged salient than others, and implies a relative rank exists on salient objects. Initially, we present a novel deep learning solution based on a hierarchical representation of relative saliency and stage-wise refinement. Further to this, we present data, analysis and baseline benchmark results towards addressing the problem of salient object ranking. Methods for deriving suitable ranked salient object instances are presented, along with metrics suitable to measuring algorithm performance. In addition, we show how a derived dataset can be successively refined to provide cleaned results that correlate well with pristine ground truth in its characteristics and value for training and testing models. Finally, we provide a comparison among prevailing algorithms that address salient object ranking or detection to establish initial baselines providing a basis for comparison with future efforts addressing this problem. The source code and data are publicly available via our project page: ryersonvisionlab.github.io/cocosalrank .
doi_str_mv 10.1109/TPAMI.2019.2927203
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_2254503526</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8756097</ieee_id><sourcerecordid>2254503526</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-bde7858b7c71e641e5ae1e16ff3d97caf66a87e10cad3bd7bfeae4b7bc2022083</originalsourceid><addsrcrecordid>eNpdkE1PwkAQhjdGI4j-AU1MEy8eLO5Ht7vrDfGLBKJBPG-226kWSovd1oR_bwvIwdNOss-8M_MgdE5wnxCsbmdvg8moTzFRfaqooJgdoC5RTPmMM3WIupiE1JeSyg46cW6OMQk4ZseowwiVLBC4i4ZTyEyV_oD3brIUcrv2TB57U5Mv0vzzzpsUMWTuxptAVaa2KR5MZTbIfQN_LU25cKfoKDGZg7Pd20MfT4-z4Ys_fn0eDQdj3zLFKz-KQUguI2EFgTAgwA0QIGGSsFgJa5IwNFIAwdbELIpFlICBIBKRpZhSLFkPXW9zV2XxXYOr9DJ1FrLM5FDUTlPK2_s4DRv06h86L-oyb7bTNAil4AyTNpBuKVsWzpWQ6FWZNietNcG6Vaw3inWrWO8UN02Xu-g6WkK8b_lz2gAXWyAFgP13MzPESrBfgAR-kQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2468753018</pqid></control><display><type>article</type><title>Relative Saliency and Ranking: Models, Metrics, Data and Benchmarks</title><source>IEEE Electronic Library (IEL)</source><creator>Kalash, Mahmoud ; Islam, Md Amirul ; Bruce, Neil D. B.</creator><creatorcontrib>Kalash, Mahmoud ; Islam, Md Amirul ; Bruce, Neil D. B.</creatorcontrib><description>Salient object detection is a problem that has been considered in detail and many solutions have been proposed. In this paper, we argue that work to date has addressed a problem that is relatively ill-posed. Specifically, there is not universal agreement about what constitutes a salient object when multiple observers are queried. This implies that some objects are more likely to be judged salient than others, and implies a relative rank exists on salient objects. Initially, we present a novel deep learning solution based on a hierarchical representation of relative saliency and stage-wise refinement. Further to this, we present data, analysis and baseline benchmark results towards addressing the problem of salient object ranking. Methods for deriving suitable ranked salient object instances are presented, along with metrics suitable to measuring algorithm performance. In addition, we show how a derived dataset can be successively refined to provide cleaned results that correlate well with pristine ground truth in its characteristics and value for training and testing models. Finally, we provide a comparison among prevailing algorithms that address salient object ranking or detection to establish initial baselines providing a basis for comparison with future efforts addressing this problem. The source code and data are publicly available via our project page: ryersonvisionlab.github.io/cocosalrank .</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2019.2927203</identifier><identifier>PMID: 31283470</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; benchmark ; Benchmark testing ; Benchmarks ; dataset ; Feature extraction ; Ground truth ; Machine learning ; Manuals ; Measurement ; Object detection ; Object recognition ; Observers ; Ranking ; relative rank ; Salience ; Saliency ; saliency ranking ; salient instance ; salient object detection ; Source code ; Training</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2021-01, Vol.43 (1), p.204-219</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-bde7858b7c71e641e5ae1e16ff3d97caf66a87e10cad3bd7bfeae4b7bc2022083</citedby><cites>FETCH-LOGICAL-c395t-bde7858b7c71e641e5ae1e16ff3d97caf66a87e10cad3bd7bfeae4b7bc2022083</cites><orcidid>0000-0002-6952-051X ; 0000-0003-2508-213X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8756097$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8756097$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31283470$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kalash, Mahmoud</creatorcontrib><creatorcontrib>Islam, Md Amirul</creatorcontrib><creatorcontrib>Bruce, Neil D. B.</creatorcontrib><title>Relative Saliency and Ranking: Models, Metrics, Data and Benchmarks</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>Salient object detection is a problem that has been considered in detail and many solutions have been proposed. In this paper, we argue that work to date has addressed a problem that is relatively ill-posed. Specifically, there is not universal agreement about what constitutes a salient object when multiple observers are queried. This implies that some objects are more likely to be judged salient than others, and implies a relative rank exists on salient objects. Initially, we present a novel deep learning solution based on a hierarchical representation of relative saliency and stage-wise refinement. Further to this, we present data, analysis and baseline benchmark results towards addressing the problem of salient object ranking. Methods for deriving suitable ranked salient object instances are presented, along with metrics suitable to measuring algorithm performance. In addition, we show how a derived dataset can be successively refined to provide cleaned results that correlate well with pristine ground truth in its characteristics and value for training and testing models. Finally, we provide a comparison among prevailing algorithms that address salient object ranking or detection to establish initial baselines providing a basis for comparison with future efforts addressing this problem. The source code and data are publicly available via our project page: ryersonvisionlab.github.io/cocosalrank .</description><subject>Algorithms</subject><subject>benchmark</subject><subject>Benchmark testing</subject><subject>Benchmarks</subject><subject>dataset</subject><subject>Feature extraction</subject><subject>Ground truth</subject><subject>Machine learning</subject><subject>Manuals</subject><subject>Measurement</subject><subject>Object detection</subject><subject>Object recognition</subject><subject>Observers</subject><subject>Ranking</subject><subject>relative rank</subject><subject>Salience</subject><subject>Saliency</subject><subject>saliency ranking</subject><subject>salient instance</subject><subject>salient object detection</subject><subject>Source code</subject><subject>Training</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1PwkAQhjdGI4j-AU1MEy8eLO5Ht7vrDfGLBKJBPG-226kWSovd1oR_bwvIwdNOss-8M_MgdE5wnxCsbmdvg8moTzFRfaqooJgdoC5RTPmMM3WIupiE1JeSyg46cW6OMQk4ZseowwiVLBC4i4ZTyEyV_oD3brIUcrv2TB57U5Mv0vzzzpsUMWTuxptAVaa2KR5MZTbIfQN_LU25cKfoKDGZg7Pd20MfT4-z4Ys_fn0eDQdj3zLFKz-KQUguI2EFgTAgwA0QIGGSsFgJa5IwNFIAwdbELIpFlICBIBKRpZhSLFkPXW9zV2XxXYOr9DJ1FrLM5FDUTlPK2_s4DRv06h86L-oyb7bTNAil4AyTNpBuKVsWzpWQ6FWZNietNcG6Vaw3inWrWO8UN02Xu-g6WkK8b_lz2gAXWyAFgP13MzPESrBfgAR-kQ</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Kalash, Mahmoud</creator><creator>Islam, Md Amirul</creator><creator>Bruce, Neil D. B.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6952-051X</orcidid><orcidid>https://orcid.org/0000-0003-2508-213X</orcidid></search><sort><creationdate>20210101</creationdate><title>Relative Saliency and Ranking: Models, Metrics, Data and Benchmarks</title><author>Kalash, Mahmoud ; Islam, Md Amirul ; Bruce, Neil D. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-bde7858b7c71e641e5ae1e16ff3d97caf66a87e10cad3bd7bfeae4b7bc2022083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>benchmark</topic><topic>Benchmark testing</topic><topic>Benchmarks</topic><topic>dataset</topic><topic>Feature extraction</topic><topic>Ground truth</topic><topic>Machine learning</topic><topic>Manuals</topic><topic>Measurement</topic><topic>Object detection</topic><topic>Object recognition</topic><topic>Observers</topic><topic>Ranking</topic><topic>relative rank</topic><topic>Salience</topic><topic>Saliency</topic><topic>saliency ranking</topic><topic>salient instance</topic><topic>salient object detection</topic><topic>Source code</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kalash, Mahmoud</creatorcontrib><creatorcontrib>Islam, Md Amirul</creatorcontrib><creatorcontrib>Bruce, Neil D. B.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kalash, Mahmoud</au><au>Islam, Md Amirul</au><au>Bruce, Neil D. B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Relative Saliency and Ranking: Models, Metrics, Data and Benchmarks</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2021-01-01</date><risdate>2021</risdate><volume>43</volume><issue>1</issue><spage>204</spage><epage>219</epage><pages>204-219</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>Salient object detection is a problem that has been considered in detail and many solutions have been proposed. In this paper, we argue that work to date has addressed a problem that is relatively ill-posed. Specifically, there is not universal agreement about what constitutes a salient object when multiple observers are queried. This implies that some objects are more likely to be judged salient than others, and implies a relative rank exists on salient objects. Initially, we present a novel deep learning solution based on a hierarchical representation of relative saliency and stage-wise refinement. Further to this, we present data, analysis and baseline benchmark results towards addressing the problem of salient object ranking. Methods for deriving suitable ranked salient object instances are presented, along with metrics suitable to measuring algorithm performance. In addition, we show how a derived dataset can be successively refined to provide cleaned results that correlate well with pristine ground truth in its characteristics and value for training and testing models. Finally, we provide a comparison among prevailing algorithms that address salient object ranking or detection to establish initial baselines providing a basis for comparison with future efforts addressing this problem. The source code and data are publicly available via our project page: ryersonvisionlab.github.io/cocosalrank .</abstract><cop>United States</cop><pub>IEEE</pub><pmid>31283470</pmid><doi>10.1109/TPAMI.2019.2927203</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-6952-051X</orcidid><orcidid>https://orcid.org/0000-0003-2508-213X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 2021-01, Vol.43 (1), p.204-219
issn 0162-8828
1939-3539
2160-9292
language eng
recordid cdi_proquest_miscellaneous_2254503526
source IEEE Electronic Library (IEL)
subjects Algorithms
benchmark
Benchmark testing
Benchmarks
dataset
Feature extraction
Ground truth
Machine learning
Manuals
Measurement
Object detection
Object recognition
Observers
Ranking
relative rank
Salience
Saliency
saliency ranking
salient instance
salient object detection
Source code
Training
title Relative Saliency and Ranking: Models, Metrics, Data and Benchmarks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T16%3A52%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Relative%20Saliency%20and%20Ranking:%20Models,%20Metrics,%20Data%20and%20Benchmarks&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Kalash,%20Mahmoud&rft.date=2021-01-01&rft.volume=43&rft.issue=1&rft.spage=204&rft.epage=219&rft.pages=204-219&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2019.2927203&rft_dat=%3Cproquest_RIE%3E2254503526%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2468753018&rft_id=info:pmid/31283470&rft_ieee_id=8756097&rfr_iscdi=true