Effect of Fe on inorganic polyphosphate level in autotrophic and heterotrophic cells of Rhodospirillum rubrum

Inorganic polyphosphate is involved in metal homeostasis in microorganisms. The aim of the study was to reveal differences in polyphosphate metabolism of Rhodospirillum rubrum under autotrophic and heterotrophic cultivation in the presence of Fe (2.3 mg Fe 3+ L −1 ) and without Fe (traces). Heterotr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archives of microbiology 2019-11, Vol.201 (9), p.1307-1312
Hauptverfasser: Kulakovskaya, Tatiana, Zvonarev, Anton, Laurinavichius, Kestutis, Khokhlova, Galina, Vainshtein, Mikhail
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1312
container_issue 9
container_start_page 1307
container_title Archives of microbiology
container_volume 201
creator Kulakovskaya, Tatiana
Zvonarev, Anton
Laurinavichius, Kestutis
Khokhlova, Galina
Vainshtein, Mikhail
description Inorganic polyphosphate is involved in metal homeostasis in microorganisms. The aim of the study was to reveal differences in polyphosphate metabolism of Rhodospirillum rubrum under autotrophic and heterotrophic cultivation in the presence of Fe (2.3 mg Fe 3+ L −1 ) and without Fe (traces). Heterotrophic conditions without Fe resulted in cell lysis and low biomass yield. High polyphosphate content and low exopolyphosphatase activity were observed in the cells cultivated autotrophically in the presence of Fe. The cells grown heterotrophically in the presence of Fe contained more phosphate and low-molecular polyphosphate; on the contrary, the content of the high molecular polyphosphate decreased in parallel with the increase in exopolyphosphatase activity. The possible involvement of Pi and polyphosphate to the formation of Fe-containing inclusions is discussed.
doi_str_mv 10.1007/s00203-019-01697-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2253272653</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2251861382</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-f3de49e7ecececf35ec6701701619283884717e49a335d5f958f9acf0e7e43143</originalsourceid><addsrcrecordid>eNp9kUtLxTAQhYMoen38ARcScOOmmmTaJl2KXB8gCKLgLsR2YittU5NW9N-ben2AC0lCIPOdk2EOIfucHXPG5ElgTDBIGC_iyQuZvK2RBU9BJEyKh3WyYMBEogqALbIdwjNjXCilNskWcCEhZbAg3dJaLEfqLD1H6nra9M4_mb4p6eDa96F2YajNiLTFV2xjlZppdKN3Qx0R01e0xhH9z0uJbRtmt9vaVVHb-KZtp4766dFP3S7ZsKYNuPd175D78-Xd2WVyfXNxdXZ6nZQgszGxUGFaoMRyXhYyLHPJeNw5L4QCpVLJZUQMQFZltsiULUxpWZSkECewQ45WvoN3LxOGUXdNmFszPbopaCEyEFLkGUT08A_67Cbfx-5miqucgxKREiuq9C4Ej1YPvumMf9ec6TkMvQpDxzD0Zxj6LYoOvqynxw6rH8n39CMAKyDEUv-E_vfvf2w_AP-ElnA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2251861382</pqid></control><display><type>article</type><title>Effect of Fe on inorganic polyphosphate level in autotrophic and heterotrophic cells of Rhodospirillum rubrum</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Kulakovskaya, Tatiana ; Zvonarev, Anton ; Laurinavichius, Kestutis ; Khokhlova, Galina ; Vainshtein, Mikhail</creator><creatorcontrib>Kulakovskaya, Tatiana ; Zvonarev, Anton ; Laurinavichius, Kestutis ; Khokhlova, Galina ; Vainshtein, Mikhail</creatorcontrib><description>Inorganic polyphosphate is involved in metal homeostasis in microorganisms. The aim of the study was to reveal differences in polyphosphate metabolism of Rhodospirillum rubrum under autotrophic and heterotrophic cultivation in the presence of Fe (2.3 mg Fe 3+ L −1 ) and without Fe (traces). Heterotrophic conditions without Fe resulted in cell lysis and low biomass yield. High polyphosphate content and low exopolyphosphatase activity were observed in the cells cultivated autotrophically in the presence of Fe. The cells grown heterotrophically in the presence of Fe contained more phosphate and low-molecular polyphosphate; on the contrary, the content of the high molecular polyphosphate decreased in parallel with the increase in exopolyphosphatase activity. The possible involvement of Pi and polyphosphate to the formation of Fe-containing inclusions is discussed.</description><identifier>ISSN: 0302-8933</identifier><identifier>EISSN: 1432-072X</identifier><identifier>DOI: 10.1007/s00203-019-01697-x</identifier><identifier>PMID: 31273403</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Acid Anhydride Hydrolases ; Autotrophic Processes - physiology ; Biochemistry ; Biomedical and Life Sciences ; Biotechnology ; Cell Biology ; Cultivation ; Ecology ; Exopolyphosphatase ; Heterotrophic Processes - physiology ; Homeostasis ; Inclusion Bodies - metabolism ; Inclusions ; Iron ; Iron - metabolism ; Life Sciences ; Lysis ; Metabolism ; Microbial Ecology ; Microbiology ; Microorganisms ; Polyphosphates - metabolism ; Rhodospirillum rubrum ; Rhodospirillum rubrum - metabolism ; Short Communication</subject><ispartof>Archives of microbiology, 2019-11, Vol.201 (9), p.1307-1312</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Archives of Microbiology is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-f3de49e7ecececf35ec6701701619283884717e49a335d5f958f9acf0e7e43143</citedby><cites>FETCH-LOGICAL-c375t-f3de49e7ecececf35ec6701701619283884717e49a335d5f958f9acf0e7e43143</cites><orcidid>0000-0001-8556-809X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00203-019-01697-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00203-019-01697-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31273403$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kulakovskaya, Tatiana</creatorcontrib><creatorcontrib>Zvonarev, Anton</creatorcontrib><creatorcontrib>Laurinavichius, Kestutis</creatorcontrib><creatorcontrib>Khokhlova, Galina</creatorcontrib><creatorcontrib>Vainshtein, Mikhail</creatorcontrib><title>Effect of Fe on inorganic polyphosphate level in autotrophic and heterotrophic cells of Rhodospirillum rubrum</title><title>Archives of microbiology</title><addtitle>Arch Microbiol</addtitle><addtitle>Arch Microbiol</addtitle><description>Inorganic polyphosphate is involved in metal homeostasis in microorganisms. The aim of the study was to reveal differences in polyphosphate metabolism of Rhodospirillum rubrum under autotrophic and heterotrophic cultivation in the presence of Fe (2.3 mg Fe 3+ L −1 ) and without Fe (traces). Heterotrophic conditions without Fe resulted in cell lysis and low biomass yield. High polyphosphate content and low exopolyphosphatase activity were observed in the cells cultivated autotrophically in the presence of Fe. The cells grown heterotrophically in the presence of Fe contained more phosphate and low-molecular polyphosphate; on the contrary, the content of the high molecular polyphosphate decreased in parallel with the increase in exopolyphosphatase activity. The possible involvement of Pi and polyphosphate to the formation of Fe-containing inclusions is discussed.</description><subject>Acid Anhydride Hydrolases</subject><subject>Autotrophic Processes - physiology</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Cell Biology</subject><subject>Cultivation</subject><subject>Ecology</subject><subject>Exopolyphosphatase</subject><subject>Heterotrophic Processes - physiology</subject><subject>Homeostasis</subject><subject>Inclusion Bodies - metabolism</subject><subject>Inclusions</subject><subject>Iron</subject><subject>Iron - metabolism</subject><subject>Life Sciences</subject><subject>Lysis</subject><subject>Metabolism</subject><subject>Microbial Ecology</subject><subject>Microbiology</subject><subject>Microorganisms</subject><subject>Polyphosphates - metabolism</subject><subject>Rhodospirillum rubrum</subject><subject>Rhodospirillum rubrum - metabolism</subject><subject>Short Communication</subject><issn>0302-8933</issn><issn>1432-072X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kUtLxTAQhYMoen38ARcScOOmmmTaJl2KXB8gCKLgLsR2YittU5NW9N-ben2AC0lCIPOdk2EOIfucHXPG5ElgTDBIGC_iyQuZvK2RBU9BJEyKh3WyYMBEogqALbIdwjNjXCilNskWcCEhZbAg3dJaLEfqLD1H6nra9M4_mb4p6eDa96F2YajNiLTFV2xjlZppdKN3Qx0R01e0xhH9z0uJbRtmt9vaVVHb-KZtp4766dFP3S7ZsKYNuPd175D78-Xd2WVyfXNxdXZ6nZQgszGxUGFaoMRyXhYyLHPJeNw5L4QCpVLJZUQMQFZltsiULUxpWZSkECewQ45WvoN3LxOGUXdNmFszPbopaCEyEFLkGUT08A_67Cbfx-5miqucgxKREiuq9C4Ej1YPvumMf9ec6TkMvQpDxzD0Zxj6LYoOvqynxw6rH8n39CMAKyDEUv-E_vfvf2w_AP-ElnA</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Kulakovskaya, Tatiana</creator><creator>Zvonarev, Anton</creator><creator>Laurinavichius, Kestutis</creator><creator>Khokhlova, Galina</creator><creator>Vainshtein, Mikhail</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8556-809X</orcidid></search><sort><creationdate>20191101</creationdate><title>Effect of Fe on inorganic polyphosphate level in autotrophic and heterotrophic cells of Rhodospirillum rubrum</title><author>Kulakovskaya, Tatiana ; Zvonarev, Anton ; Laurinavichius, Kestutis ; Khokhlova, Galina ; Vainshtein, Mikhail</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-f3de49e7ecececf35ec6701701619283884717e49a335d5f958f9acf0e7e43143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acid Anhydride Hydrolases</topic><topic>Autotrophic Processes - physiology</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Cell Biology</topic><topic>Cultivation</topic><topic>Ecology</topic><topic>Exopolyphosphatase</topic><topic>Heterotrophic Processes - physiology</topic><topic>Homeostasis</topic><topic>Inclusion Bodies - metabolism</topic><topic>Inclusions</topic><topic>Iron</topic><topic>Iron - metabolism</topic><topic>Life Sciences</topic><topic>Lysis</topic><topic>Metabolism</topic><topic>Microbial Ecology</topic><topic>Microbiology</topic><topic>Microorganisms</topic><topic>Polyphosphates - metabolism</topic><topic>Rhodospirillum rubrum</topic><topic>Rhodospirillum rubrum - metabolism</topic><topic>Short Communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kulakovskaya, Tatiana</creatorcontrib><creatorcontrib>Zvonarev, Anton</creatorcontrib><creatorcontrib>Laurinavichius, Kestutis</creatorcontrib><creatorcontrib>Khokhlova, Galina</creatorcontrib><creatorcontrib>Vainshtein, Mikhail</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Archives of microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kulakovskaya, Tatiana</au><au>Zvonarev, Anton</au><au>Laurinavichius, Kestutis</au><au>Khokhlova, Galina</au><au>Vainshtein, Mikhail</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Fe on inorganic polyphosphate level in autotrophic and heterotrophic cells of Rhodospirillum rubrum</atitle><jtitle>Archives of microbiology</jtitle><stitle>Arch Microbiol</stitle><addtitle>Arch Microbiol</addtitle><date>2019-11-01</date><risdate>2019</risdate><volume>201</volume><issue>9</issue><spage>1307</spage><epage>1312</epage><pages>1307-1312</pages><issn>0302-8933</issn><eissn>1432-072X</eissn><abstract>Inorganic polyphosphate is involved in metal homeostasis in microorganisms. The aim of the study was to reveal differences in polyphosphate metabolism of Rhodospirillum rubrum under autotrophic and heterotrophic cultivation in the presence of Fe (2.3 mg Fe 3+ L −1 ) and without Fe (traces). Heterotrophic conditions without Fe resulted in cell lysis and low biomass yield. High polyphosphate content and low exopolyphosphatase activity were observed in the cells cultivated autotrophically in the presence of Fe. The cells grown heterotrophically in the presence of Fe contained more phosphate and low-molecular polyphosphate; on the contrary, the content of the high molecular polyphosphate decreased in parallel with the increase in exopolyphosphatase activity. The possible involvement of Pi and polyphosphate to the formation of Fe-containing inclusions is discussed.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>31273403</pmid><doi>10.1007/s00203-019-01697-x</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-8556-809X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0302-8933
ispartof Archives of microbiology, 2019-11, Vol.201 (9), p.1307-1312
issn 0302-8933
1432-072X
language eng
recordid cdi_proquest_miscellaneous_2253272653
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Acid Anhydride Hydrolases
Autotrophic Processes - physiology
Biochemistry
Biomedical and Life Sciences
Biotechnology
Cell Biology
Cultivation
Ecology
Exopolyphosphatase
Heterotrophic Processes - physiology
Homeostasis
Inclusion Bodies - metabolism
Inclusions
Iron
Iron - metabolism
Life Sciences
Lysis
Metabolism
Microbial Ecology
Microbiology
Microorganisms
Polyphosphates - metabolism
Rhodospirillum rubrum
Rhodospirillum rubrum - metabolism
Short Communication
title Effect of Fe on inorganic polyphosphate level in autotrophic and heterotrophic cells of Rhodospirillum rubrum
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T16%3A13%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Fe%20on%20inorganic%20polyphosphate%20level%20in%20autotrophic%20and%20heterotrophic%20cells%20of%20Rhodospirillum%20rubrum&rft.jtitle=Archives%20of%20microbiology&rft.au=Kulakovskaya,%20Tatiana&rft.date=2019-11-01&rft.volume=201&rft.issue=9&rft.spage=1307&rft.epage=1312&rft.pages=1307-1312&rft.issn=0302-8933&rft.eissn=1432-072X&rft_id=info:doi/10.1007/s00203-019-01697-x&rft_dat=%3Cproquest_cross%3E2251861382%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2251861382&rft_id=info:pmid/31273403&rfr_iscdi=true