Characterization of Gene Circuit Parts Based on Multiobjective Optimization by Using Standard Calibrated Measurements
Standardization and characterization of biological parts is necessary for the further development of bottom‐up synthetic biology. Herein, an easy‐to‐use methodology that embodies both a calibration procedure and a multiobjective optimization approach is proposed to characterize biological parts. The...
Gespeichert in:
Veröffentlicht in: | Chembiochem : a European journal of chemical biology 2019-10, Vol.20 (20), p.2653-2665 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2665 |
---|---|
container_issue | 20 |
container_start_page | 2653 |
container_title | Chembiochem : a European journal of chemical biology |
container_volume | 20 |
creator | Boada, Yadira Vignoni, Alejandro Alarcon‐Ruiz, Iván Andreu‐Vilarroig, Carlos Monfort‐Llorens, Roger Requena, Adrián Picó, Jesús |
description | Standardization and characterization of biological parts is necessary for the further development of bottom‐up synthetic biology. Herein, an easy‐to‐use methodology that embodies both a calibration procedure and a multiobjective optimization approach is proposed to characterize biological parts. The calibration procedure generates values for specific fluorescence per cell expressed as standard units of molecules of equivalent fluorescein per particle. The use of absolute standard units enhances the characterization of model parameters for biological parts by bringing measurements and estimations results from different sources into a common domain, so they can be integrated and compared faithfully. The multiobjective optimization procedure exploits these concepts by estimating the values of the model parameters, which represent biological parts of interest, while considering a varied range of experimental and circuit contexts. Thus, multiobjective optimization provides a robust characterization of them. The proposed calibration and characterization methodology can be used as a guide for good practices in dry and wet laboratories; thus allowing not only portability between models, but is also useful for generating libraries of tested and well‐characterized biological parts.
Modeling the part: Fluorescence calibration and multiobjective characterization of biological parts are methodologies that can be used as a guide for good practices in dry and wet laboratories; thus allowing not only portability between models of parts, but are also useful for generating libraries of tested and well‐characterized biological parts. |
doi_str_mv | 10.1002/cbic.201900272 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2252271893</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2252271893</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4102-1523d27b5a9a38d4b91759c3df19558a5fe866ae5879e52f912e442ca1ee13b73</originalsourceid><addsrcrecordid>eNqFkctrGzEQxkVJqZO01x6DIJde7Oix2l0d66V5gE0KSc5iVjvbyOzDlbQp7l8fBTsp9JLTzDC_72OYj5CvnC04Y-LC1s4uBOM6DYX4QI55JvW8yKU8OvSZEMWMnISwYYzpXPJPZCa5yLUU2TGZqkfwYCN69xeiGwc6tvQKB6SV83Zykf4EHwNdQsCGpvV66hJWb9BG94T0dhtd_yqtd_QhuOEXvYswNOAbWkHnag8xadcIYfLY4xDDZ_KxhS7gl0M9JQ-XP-6r6_nq9uqm-r6a24wzMedKyEYUtQINsmyyWvNCaSublmulSlAtlnkOqMpCoxKt5gKzTFjgiFzWhTwl3_a-Wz_-njBE07tgsetgwHEKRgiVvsNLLRN6_h-6GSc_pOuMkCxnssxVmajFnrJ-DMFja7be9eB3hjPzEoh5CcS8BZIEZwfbqe6xecNfE0iA3gN_XIe7d-xMtbyp_pk_Az9El4Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2306038658</pqid></control><display><type>article</type><title>Characterization of Gene Circuit Parts Based on Multiobjective Optimization by Using Standard Calibrated Measurements</title><source>Wiley-Blackwell Journals</source><creator>Boada, Yadira ; Vignoni, Alejandro ; Alarcon‐Ruiz, Iván ; Andreu‐Vilarroig, Carlos ; Monfort‐Llorens, Roger ; Requena, Adrián ; Picó, Jesús</creator><creatorcontrib>Boada, Yadira ; Vignoni, Alejandro ; Alarcon‐Ruiz, Iván ; Andreu‐Vilarroig, Carlos ; Monfort‐Llorens, Roger ; Requena, Adrián ; Picó, Jesús</creatorcontrib><description>Standardization and characterization of biological parts is necessary for the further development of bottom‐up synthetic biology. Herein, an easy‐to‐use methodology that embodies both a calibration procedure and a multiobjective optimization approach is proposed to characterize biological parts. The calibration procedure generates values for specific fluorescence per cell expressed as standard units of molecules of equivalent fluorescein per particle. The use of absolute standard units enhances the characterization of model parameters for biological parts by bringing measurements and estimations results from different sources into a common domain, so they can be integrated and compared faithfully. The multiobjective optimization procedure exploits these concepts by estimating the values of the model parameters, which represent biological parts of interest, while considering a varied range of experimental and circuit contexts. Thus, multiobjective optimization provides a robust characterization of them. The proposed calibration and characterization methodology can be used as a guide for good practices in dry and wet laboratories; thus allowing not only portability between models, but is also useful for generating libraries of tested and well‐characterized biological parts.
Modeling the part: Fluorescence calibration and multiobjective characterization of biological parts are methodologies that can be used as a guide for good practices in dry and wet laboratories; thus allowing not only portability between models of parts, but are also useful for generating libraries of tested and well‐characterized biological parts.</description><identifier>ISSN: 1439-4227</identifier><identifier>EISSN: 1439-7633</identifier><identifier>DOI: 10.1002/cbic.201900272</identifier><identifier>PMID: 31269324</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>bioinformatics ; Calibration ; Circuits ; DNA ; Fluorescein ; Fluorescence ; gene technology ; Mathematical models ; Multiple objective analysis ; Optimization ; Parameters ; Pareto optimum ; Standardization ; synthetic biology</subject><ispartof>Chembiochem : a European journal of chemical biology, 2019-10, Vol.20 (20), p.2653-2665</ispartof><rights>2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4102-1523d27b5a9a38d4b91759c3df19558a5fe866ae5879e52f912e442ca1ee13b73</citedby><cites>FETCH-LOGICAL-c4102-1523d27b5a9a38d4b91759c3df19558a5fe866ae5879e52f912e442ca1ee13b73</cites><orcidid>0000-0001-9977-7132</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcbic.201900272$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcbic.201900272$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31269324$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Boada, Yadira</creatorcontrib><creatorcontrib>Vignoni, Alejandro</creatorcontrib><creatorcontrib>Alarcon‐Ruiz, Iván</creatorcontrib><creatorcontrib>Andreu‐Vilarroig, Carlos</creatorcontrib><creatorcontrib>Monfort‐Llorens, Roger</creatorcontrib><creatorcontrib>Requena, Adrián</creatorcontrib><creatorcontrib>Picó, Jesús</creatorcontrib><title>Characterization of Gene Circuit Parts Based on Multiobjective Optimization by Using Standard Calibrated Measurements</title><title>Chembiochem : a European journal of chemical biology</title><addtitle>Chembiochem</addtitle><description>Standardization and characterization of biological parts is necessary for the further development of bottom‐up synthetic biology. Herein, an easy‐to‐use methodology that embodies both a calibration procedure and a multiobjective optimization approach is proposed to characterize biological parts. The calibration procedure generates values for specific fluorescence per cell expressed as standard units of molecules of equivalent fluorescein per particle. The use of absolute standard units enhances the characterization of model parameters for biological parts by bringing measurements and estimations results from different sources into a common domain, so they can be integrated and compared faithfully. The multiobjective optimization procedure exploits these concepts by estimating the values of the model parameters, which represent biological parts of interest, while considering a varied range of experimental and circuit contexts. Thus, multiobjective optimization provides a robust characterization of them. The proposed calibration and characterization methodology can be used as a guide for good practices in dry and wet laboratories; thus allowing not only portability between models, but is also useful for generating libraries of tested and well‐characterized biological parts.
Modeling the part: Fluorescence calibration and multiobjective characterization of biological parts are methodologies that can be used as a guide for good practices in dry and wet laboratories; thus allowing not only portability between models of parts, but are also useful for generating libraries of tested and well‐characterized biological parts.</description><subject>bioinformatics</subject><subject>Calibration</subject><subject>Circuits</subject><subject>DNA</subject><subject>Fluorescein</subject><subject>Fluorescence</subject><subject>gene technology</subject><subject>Mathematical models</subject><subject>Multiple objective analysis</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Pareto optimum</subject><subject>Standardization</subject><subject>synthetic biology</subject><issn>1439-4227</issn><issn>1439-7633</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkctrGzEQxkVJqZO01x6DIJde7Oix2l0d66V5gE0KSc5iVjvbyOzDlbQp7l8fBTsp9JLTzDC_72OYj5CvnC04Y-LC1s4uBOM6DYX4QI55JvW8yKU8OvSZEMWMnISwYYzpXPJPZCa5yLUU2TGZqkfwYCN69xeiGwc6tvQKB6SV83Zykf4EHwNdQsCGpvV66hJWb9BG94T0dhtd_yqtd_QhuOEXvYswNOAbWkHnag8xadcIYfLY4xDDZ_KxhS7gl0M9JQ-XP-6r6_nq9uqm-r6a24wzMedKyEYUtQINsmyyWvNCaSublmulSlAtlnkOqMpCoxKt5gKzTFjgiFzWhTwl3_a-Wz_-njBE07tgsetgwHEKRgiVvsNLLRN6_h-6GSc_pOuMkCxnssxVmajFnrJ-DMFja7be9eB3hjPzEoh5CcS8BZIEZwfbqe6xecNfE0iA3gN_XIe7d-xMtbyp_pk_Az9El4Y</recordid><startdate>20191015</startdate><enddate>20191015</enddate><creator>Boada, Yadira</creator><creator>Vignoni, Alejandro</creator><creator>Alarcon‐Ruiz, Iván</creator><creator>Andreu‐Vilarroig, Carlos</creator><creator>Monfort‐Llorens, Roger</creator><creator>Requena, Adrián</creator><creator>Picó, Jesús</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9977-7132</orcidid></search><sort><creationdate>20191015</creationdate><title>Characterization of Gene Circuit Parts Based on Multiobjective Optimization by Using Standard Calibrated Measurements</title><author>Boada, Yadira ; Vignoni, Alejandro ; Alarcon‐Ruiz, Iván ; Andreu‐Vilarroig, Carlos ; Monfort‐Llorens, Roger ; Requena, Adrián ; Picó, Jesús</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4102-1523d27b5a9a38d4b91759c3df19558a5fe866ae5879e52f912e442ca1ee13b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>bioinformatics</topic><topic>Calibration</topic><topic>Circuits</topic><topic>DNA</topic><topic>Fluorescein</topic><topic>Fluorescence</topic><topic>gene technology</topic><topic>Mathematical models</topic><topic>Multiple objective analysis</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Pareto optimum</topic><topic>Standardization</topic><topic>synthetic biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boada, Yadira</creatorcontrib><creatorcontrib>Vignoni, Alejandro</creatorcontrib><creatorcontrib>Alarcon‐Ruiz, Iván</creatorcontrib><creatorcontrib>Andreu‐Vilarroig, Carlos</creatorcontrib><creatorcontrib>Monfort‐Llorens, Roger</creatorcontrib><creatorcontrib>Requena, Adrián</creatorcontrib><creatorcontrib>Picó, Jesús</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Chembiochem : a European journal of chemical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boada, Yadira</au><au>Vignoni, Alejandro</au><au>Alarcon‐Ruiz, Iván</au><au>Andreu‐Vilarroig, Carlos</au><au>Monfort‐Llorens, Roger</au><au>Requena, Adrián</au><au>Picó, Jesús</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of Gene Circuit Parts Based on Multiobjective Optimization by Using Standard Calibrated Measurements</atitle><jtitle>Chembiochem : a European journal of chemical biology</jtitle><addtitle>Chembiochem</addtitle><date>2019-10-15</date><risdate>2019</risdate><volume>20</volume><issue>20</issue><spage>2653</spage><epage>2665</epage><pages>2653-2665</pages><issn>1439-4227</issn><eissn>1439-7633</eissn><abstract>Standardization and characterization of biological parts is necessary for the further development of bottom‐up synthetic biology. Herein, an easy‐to‐use methodology that embodies both a calibration procedure and a multiobjective optimization approach is proposed to characterize biological parts. The calibration procedure generates values for specific fluorescence per cell expressed as standard units of molecules of equivalent fluorescein per particle. The use of absolute standard units enhances the characterization of model parameters for biological parts by bringing measurements and estimations results from different sources into a common domain, so they can be integrated and compared faithfully. The multiobjective optimization procedure exploits these concepts by estimating the values of the model parameters, which represent biological parts of interest, while considering a varied range of experimental and circuit contexts. Thus, multiobjective optimization provides a robust characterization of them. The proposed calibration and characterization methodology can be used as a guide for good practices in dry and wet laboratories; thus allowing not only portability between models, but is also useful for generating libraries of tested and well‐characterized biological parts.
Modeling the part: Fluorescence calibration and multiobjective characterization of biological parts are methodologies that can be used as a guide for good practices in dry and wet laboratories; thus allowing not only portability between models of parts, but are also useful for generating libraries of tested and well‐characterized biological parts.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31269324</pmid><doi>10.1002/cbic.201900272</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-9977-7132</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1439-4227 |
ispartof | Chembiochem : a European journal of chemical biology, 2019-10, Vol.20 (20), p.2653-2665 |
issn | 1439-4227 1439-7633 |
language | eng |
recordid | cdi_proquest_miscellaneous_2252271893 |
source | Wiley-Blackwell Journals |
subjects | bioinformatics Calibration Circuits DNA Fluorescein Fluorescence gene technology Mathematical models Multiple objective analysis Optimization Parameters Pareto optimum Standardization synthetic biology |
title | Characterization of Gene Circuit Parts Based on Multiobjective Optimization by Using Standard Calibrated Measurements |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A29%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20Gene%20Circuit%20Parts%20Based%20on%20Multiobjective%20Optimization%20by%20Using%20Standard%20Calibrated%20Measurements&rft.jtitle=Chembiochem%20:%20a%20European%20journal%20of%20chemical%20biology&rft.au=Boada,%20Yadira&rft.date=2019-10-15&rft.volume=20&rft.issue=20&rft.spage=2653&rft.epage=2665&rft.pages=2653-2665&rft.issn=1439-4227&rft.eissn=1439-7633&rft_id=info:doi/10.1002/cbic.201900272&rft_dat=%3Cproquest_cross%3E2252271893%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2306038658&rft_id=info:pmid/31269324&rfr_iscdi=true |