Characterization of Gene Circuit Parts Based on Multiobjective Optimization by Using Standard Calibrated Measurements

Standardization and characterization of biological parts is necessary for the further development of bottom‐up synthetic biology. Herein, an easy‐to‐use methodology that embodies both a calibration procedure and a multiobjective optimization approach is proposed to characterize biological parts. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chembiochem : a European journal of chemical biology 2019-10, Vol.20 (20), p.2653-2665
Hauptverfasser: Boada, Yadira, Vignoni, Alejandro, Alarcon‐Ruiz, Iván, Andreu‐Vilarroig, Carlos, Monfort‐Llorens, Roger, Requena, Adrián, Picó, Jesús
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2665
container_issue 20
container_start_page 2653
container_title Chembiochem : a European journal of chemical biology
container_volume 20
creator Boada, Yadira
Vignoni, Alejandro
Alarcon‐Ruiz, Iván
Andreu‐Vilarroig, Carlos
Monfort‐Llorens, Roger
Requena, Adrián
Picó, Jesús
description Standardization and characterization of biological parts is necessary for the further development of bottom‐up synthetic biology. Herein, an easy‐to‐use methodology that embodies both a calibration procedure and a multiobjective optimization approach is proposed to characterize biological parts. The calibration procedure generates values for specific fluorescence per cell expressed as standard units of molecules of equivalent fluorescein per particle. The use of absolute standard units enhances the characterization of model parameters for biological parts by bringing measurements and estimations results from different sources into a common domain, so they can be integrated and compared faithfully. The multiobjective optimization procedure exploits these concepts by estimating the values of the model parameters, which represent biological parts of interest, while considering a varied range of experimental and circuit contexts. Thus, multiobjective optimization provides a robust characterization of them. The proposed calibration and characterization methodology can be used as a guide for good practices in dry and wet laboratories; thus allowing not only portability between models, but is also useful for generating libraries of tested and well‐characterized biological parts. Modeling the part: Fluorescence calibration and multiobjective characterization of biological parts are methodologies that can be used as a guide for good practices in dry and wet laboratories; thus allowing not only portability between models of parts, but are also useful for generating libraries of tested and well‐characterized biological parts.
doi_str_mv 10.1002/cbic.201900272
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2252271893</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2252271893</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4102-1523d27b5a9a38d4b91759c3df19558a5fe866ae5879e52f912e442ca1ee13b73</originalsourceid><addsrcrecordid>eNqFkctrGzEQxkVJqZO01x6DIJde7Oix2l0d66V5gE0KSc5iVjvbyOzDlbQp7l8fBTsp9JLTzDC_72OYj5CvnC04Y-LC1s4uBOM6DYX4QI55JvW8yKU8OvSZEMWMnISwYYzpXPJPZCa5yLUU2TGZqkfwYCN69xeiGwc6tvQKB6SV83Zykf4EHwNdQsCGpvV66hJWb9BG94T0dhtd_yqtd_QhuOEXvYswNOAbWkHnag8xadcIYfLY4xDDZ_KxhS7gl0M9JQ-XP-6r6_nq9uqm-r6a24wzMedKyEYUtQINsmyyWvNCaSublmulSlAtlnkOqMpCoxKt5gKzTFjgiFzWhTwl3_a-Wz_-njBE07tgsetgwHEKRgiVvsNLLRN6_h-6GSc_pOuMkCxnssxVmajFnrJ-DMFja7be9eB3hjPzEoh5CcS8BZIEZwfbqe6xecNfE0iA3gN_XIe7d-xMtbyp_pk_Az9El4Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2306038658</pqid></control><display><type>article</type><title>Characterization of Gene Circuit Parts Based on Multiobjective Optimization by Using Standard Calibrated Measurements</title><source>Wiley-Blackwell Journals</source><creator>Boada, Yadira ; Vignoni, Alejandro ; Alarcon‐Ruiz, Iván ; Andreu‐Vilarroig, Carlos ; Monfort‐Llorens, Roger ; Requena, Adrián ; Picó, Jesús</creator><creatorcontrib>Boada, Yadira ; Vignoni, Alejandro ; Alarcon‐Ruiz, Iván ; Andreu‐Vilarroig, Carlos ; Monfort‐Llorens, Roger ; Requena, Adrián ; Picó, Jesús</creatorcontrib><description>Standardization and characterization of biological parts is necessary for the further development of bottom‐up synthetic biology. Herein, an easy‐to‐use methodology that embodies both a calibration procedure and a multiobjective optimization approach is proposed to characterize biological parts. The calibration procedure generates values for specific fluorescence per cell expressed as standard units of molecules of equivalent fluorescein per particle. The use of absolute standard units enhances the characterization of model parameters for biological parts by bringing measurements and estimations results from different sources into a common domain, so they can be integrated and compared faithfully. The multiobjective optimization procedure exploits these concepts by estimating the values of the model parameters, which represent biological parts of interest, while considering a varied range of experimental and circuit contexts. Thus, multiobjective optimization provides a robust characterization of them. The proposed calibration and characterization methodology can be used as a guide for good practices in dry and wet laboratories; thus allowing not only portability between models, but is also useful for generating libraries of tested and well‐characterized biological parts. Modeling the part: Fluorescence calibration and multiobjective characterization of biological parts are methodologies that can be used as a guide for good practices in dry and wet laboratories; thus allowing not only portability between models of parts, but are also useful for generating libraries of tested and well‐characterized biological parts.</description><identifier>ISSN: 1439-4227</identifier><identifier>EISSN: 1439-7633</identifier><identifier>DOI: 10.1002/cbic.201900272</identifier><identifier>PMID: 31269324</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>bioinformatics ; Calibration ; Circuits ; DNA ; Fluorescein ; Fluorescence ; gene technology ; Mathematical models ; Multiple objective analysis ; Optimization ; Parameters ; Pareto optimum ; Standardization ; synthetic biology</subject><ispartof>Chembiochem : a European journal of chemical biology, 2019-10, Vol.20 (20), p.2653-2665</ispartof><rights>2019 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2019 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4102-1523d27b5a9a38d4b91759c3df19558a5fe866ae5879e52f912e442ca1ee13b73</citedby><cites>FETCH-LOGICAL-c4102-1523d27b5a9a38d4b91759c3df19558a5fe866ae5879e52f912e442ca1ee13b73</cites><orcidid>0000-0001-9977-7132</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcbic.201900272$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcbic.201900272$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31269324$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Boada, Yadira</creatorcontrib><creatorcontrib>Vignoni, Alejandro</creatorcontrib><creatorcontrib>Alarcon‐Ruiz, Iván</creatorcontrib><creatorcontrib>Andreu‐Vilarroig, Carlos</creatorcontrib><creatorcontrib>Monfort‐Llorens, Roger</creatorcontrib><creatorcontrib>Requena, Adrián</creatorcontrib><creatorcontrib>Picó, Jesús</creatorcontrib><title>Characterization of Gene Circuit Parts Based on Multiobjective Optimization by Using Standard Calibrated Measurements</title><title>Chembiochem : a European journal of chemical biology</title><addtitle>Chembiochem</addtitle><description>Standardization and characterization of biological parts is necessary for the further development of bottom‐up synthetic biology. Herein, an easy‐to‐use methodology that embodies both a calibration procedure and a multiobjective optimization approach is proposed to characterize biological parts. The calibration procedure generates values for specific fluorescence per cell expressed as standard units of molecules of equivalent fluorescein per particle. The use of absolute standard units enhances the characterization of model parameters for biological parts by bringing measurements and estimations results from different sources into a common domain, so they can be integrated and compared faithfully. The multiobjective optimization procedure exploits these concepts by estimating the values of the model parameters, which represent biological parts of interest, while considering a varied range of experimental and circuit contexts. Thus, multiobjective optimization provides a robust characterization of them. The proposed calibration and characterization methodology can be used as a guide for good practices in dry and wet laboratories; thus allowing not only portability between models, but is also useful for generating libraries of tested and well‐characterized biological parts. Modeling the part: Fluorescence calibration and multiobjective characterization of biological parts are methodologies that can be used as a guide for good practices in dry and wet laboratories; thus allowing not only portability between models of parts, but are also useful for generating libraries of tested and well‐characterized biological parts.</description><subject>bioinformatics</subject><subject>Calibration</subject><subject>Circuits</subject><subject>DNA</subject><subject>Fluorescein</subject><subject>Fluorescence</subject><subject>gene technology</subject><subject>Mathematical models</subject><subject>Multiple objective analysis</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Pareto optimum</subject><subject>Standardization</subject><subject>synthetic biology</subject><issn>1439-4227</issn><issn>1439-7633</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkctrGzEQxkVJqZO01x6DIJde7Oix2l0d66V5gE0KSc5iVjvbyOzDlbQp7l8fBTsp9JLTzDC_72OYj5CvnC04Y-LC1s4uBOM6DYX4QI55JvW8yKU8OvSZEMWMnISwYYzpXPJPZCa5yLUU2TGZqkfwYCN69xeiGwc6tvQKB6SV83Zykf4EHwNdQsCGpvV66hJWb9BG94T0dhtd_yqtd_QhuOEXvYswNOAbWkHnag8xadcIYfLY4xDDZ_KxhS7gl0M9JQ-XP-6r6_nq9uqm-r6a24wzMedKyEYUtQINsmyyWvNCaSublmulSlAtlnkOqMpCoxKt5gKzTFjgiFzWhTwl3_a-Wz_-njBE07tgsetgwHEKRgiVvsNLLRN6_h-6GSc_pOuMkCxnssxVmajFnrJ-DMFja7be9eB3hjPzEoh5CcS8BZIEZwfbqe6xecNfE0iA3gN_XIe7d-xMtbyp_pk_Az9El4Y</recordid><startdate>20191015</startdate><enddate>20191015</enddate><creator>Boada, Yadira</creator><creator>Vignoni, Alejandro</creator><creator>Alarcon‐Ruiz, Iván</creator><creator>Andreu‐Vilarroig, Carlos</creator><creator>Monfort‐Llorens, Roger</creator><creator>Requena, Adrián</creator><creator>Picó, Jesús</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9977-7132</orcidid></search><sort><creationdate>20191015</creationdate><title>Characterization of Gene Circuit Parts Based on Multiobjective Optimization by Using Standard Calibrated Measurements</title><author>Boada, Yadira ; Vignoni, Alejandro ; Alarcon‐Ruiz, Iván ; Andreu‐Vilarroig, Carlos ; Monfort‐Llorens, Roger ; Requena, Adrián ; Picó, Jesús</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4102-1523d27b5a9a38d4b91759c3df19558a5fe866ae5879e52f912e442ca1ee13b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>bioinformatics</topic><topic>Calibration</topic><topic>Circuits</topic><topic>DNA</topic><topic>Fluorescein</topic><topic>Fluorescence</topic><topic>gene technology</topic><topic>Mathematical models</topic><topic>Multiple objective analysis</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Pareto optimum</topic><topic>Standardization</topic><topic>synthetic biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boada, Yadira</creatorcontrib><creatorcontrib>Vignoni, Alejandro</creatorcontrib><creatorcontrib>Alarcon‐Ruiz, Iván</creatorcontrib><creatorcontrib>Andreu‐Vilarroig, Carlos</creatorcontrib><creatorcontrib>Monfort‐Llorens, Roger</creatorcontrib><creatorcontrib>Requena, Adrián</creatorcontrib><creatorcontrib>Picó, Jesús</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Chembiochem : a European journal of chemical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boada, Yadira</au><au>Vignoni, Alejandro</au><au>Alarcon‐Ruiz, Iván</au><au>Andreu‐Vilarroig, Carlos</au><au>Monfort‐Llorens, Roger</au><au>Requena, Adrián</au><au>Picó, Jesús</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of Gene Circuit Parts Based on Multiobjective Optimization by Using Standard Calibrated Measurements</atitle><jtitle>Chembiochem : a European journal of chemical biology</jtitle><addtitle>Chembiochem</addtitle><date>2019-10-15</date><risdate>2019</risdate><volume>20</volume><issue>20</issue><spage>2653</spage><epage>2665</epage><pages>2653-2665</pages><issn>1439-4227</issn><eissn>1439-7633</eissn><abstract>Standardization and characterization of biological parts is necessary for the further development of bottom‐up synthetic biology. Herein, an easy‐to‐use methodology that embodies both a calibration procedure and a multiobjective optimization approach is proposed to characterize biological parts. The calibration procedure generates values for specific fluorescence per cell expressed as standard units of molecules of equivalent fluorescein per particle. The use of absolute standard units enhances the characterization of model parameters for biological parts by bringing measurements and estimations results from different sources into a common domain, so they can be integrated and compared faithfully. The multiobjective optimization procedure exploits these concepts by estimating the values of the model parameters, which represent biological parts of interest, while considering a varied range of experimental and circuit contexts. Thus, multiobjective optimization provides a robust characterization of them. The proposed calibration and characterization methodology can be used as a guide for good practices in dry and wet laboratories; thus allowing not only portability between models, but is also useful for generating libraries of tested and well‐characterized biological parts. Modeling the part: Fluorescence calibration and multiobjective characterization of biological parts are methodologies that can be used as a guide for good practices in dry and wet laboratories; thus allowing not only portability between models of parts, but are also useful for generating libraries of tested and well‐characterized biological parts.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31269324</pmid><doi>10.1002/cbic.201900272</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-9977-7132</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1439-4227
ispartof Chembiochem : a European journal of chemical biology, 2019-10, Vol.20 (20), p.2653-2665
issn 1439-4227
1439-7633
language eng
recordid cdi_proquest_miscellaneous_2252271893
source Wiley-Blackwell Journals
subjects bioinformatics
Calibration
Circuits
DNA
Fluorescein
Fluorescence
gene technology
Mathematical models
Multiple objective analysis
Optimization
Parameters
Pareto optimum
Standardization
synthetic biology
title Characterization of Gene Circuit Parts Based on Multiobjective Optimization by Using Standard Calibrated Measurements
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A29%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20Gene%20Circuit%20Parts%20Based%20on%20Multiobjective%20Optimization%20by%20Using%20Standard%20Calibrated%20Measurements&rft.jtitle=Chembiochem%20:%20a%20European%20journal%20of%20chemical%20biology&rft.au=Boada,%20Yadira&rft.date=2019-10-15&rft.volume=20&rft.issue=20&rft.spage=2653&rft.epage=2665&rft.pages=2653-2665&rft.issn=1439-4227&rft.eissn=1439-7633&rft_id=info:doi/10.1002/cbic.201900272&rft_dat=%3Cproquest_cross%3E2252271893%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2306038658&rft_id=info:pmid/31269324&rfr_iscdi=true