Interacting Floquet polaritons
Ordinarily, photons do not interact with one another. However, atoms can be used to mediate photonic interactions 1 , 2 , raising the prospect of forming synthetic materials 3 and quantum information systems 4 – 7 from photons. One promising approach combines highly excited Rydberg atoms 8 – 12 with...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2019-07, Vol.571 (7766), p.532-536 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 536 |
---|---|
container_issue | 7766 |
container_start_page | 532 |
container_title | Nature (London) |
container_volume | 571 |
creator | Clark, Logan W. Jia, Ningyuan Schine, Nathan Baum, Claire Georgakopoulos, Alexandros Simon, Jonathan |
description | Ordinarily, photons do not interact with one another. However, atoms can be used to mediate photonic interactions
1
,
2
, raising the prospect of forming synthetic materials
3
and quantum information systems
4
–
7
from photons. One promising approach combines highly excited Rydberg atoms
8
–
12
with the enhanced light–matter coupling of an optical cavity to convert photons into strongly interacting polaritons
13
–
15
. However, quantum materials made of optical photons have not yet been realized, because the experimental challenge of coupling a suitable atomic sample with a degenerate cavity has constrained cavity polaritons to a single spatial mode that is resonant with an atomic transition. Here we use Floquet engineering
16
,
17
—the periodic modulation of a quantum system—to enable strongly interacting polaritons to access multiple spatial modes of an optical cavity. First, we show that periodically modulating an excited state of rubidium splits its spectral weight to generate new lines—beyond those that are ordinarily characteristic of the atom—separated by multiples of the modulation frequency. Second, we use this capability to simultaneously generate spectral lines that are resonant with two chosen spatial modes of a non-degenerate optical cavity, enabling what we name ‘Floquet polaritons’ to exist in both modes. Because both spectral lines correspond to the same Floquet-engineered atomic state, adding a single-frequency field is sufficient to couple both modes to a Rydberg excitation. We demonstrate that the resulting polaritons interact strongly in both cavity modes simultaneously. The production of Floquet polaritons provides a promising new route to the realization of ordered states of strongly correlated photons, including crystals and topological fluids, as well as quantum information technologies such as multimode photon-by-photon switching.
Frequency modulation is used to create ‘Floquet polaritons’—strongly interacting quasi-particles that exist in a customizable set of modes. |
doi_str_mv | 10.1038/s41586-019-1354-5 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2252264454</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A594456919</galeid><sourcerecordid>A594456919</sourcerecordid><originalsourceid>FETCH-LOGICAL-c574t-100ab89b3ee2ed08dca5a411f50973aa4695935dc44cf6b40ab2753bb96009c03</originalsourceid><addsrcrecordid>eNp10u9L3DAYB_AwJvN0-wP2RmS-USTuyc82L4_D0wNxsDn2MqRpWiq99ExScP_9cpxOT076otB8ni9J-kXoK4ELAqz8HjkRpcRAFCZMcCw-oAnhhcRclsVHNAGgJYaSyX10EOM9AAhS8E9onxFaAJcwQUcLn1wwNnW-PZ73w8Po0vFq6E3o0uDjZ7TXmD66L0_vQ_R7fnk3u8Y3P64Ws-kNtqLgCRMAU5WqYs5RV0NZWyMMJ6QRoApmDJdKKCZqy7ltZMWzpoVgVaUkgLLADtHpJncV1luISS-7aF3fG--GMWpKBaWSc8EzPXlD74cx-Ly7rGSRT84VvKjW9E53vhlSPuU6VE-FykFSEZUV3qFa5_OV9IN3TZc_b_lvO7xddQ_6NbrYgfJTu2Vnd6aebQ1kk9xjas0Yo178-rltz9-307s_s9ttTTbahiHG4Bq9Ct3ShL-agF5XSG8qpHOF9LpCWuSZo6f7Haulq_9PPHcmA7oBMS_51oWXH_B-6j-o1MmE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2267687490</pqid></control><display><type>article</type><title>Interacting Floquet polaritons</title><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Clark, Logan W. ; Jia, Ningyuan ; Schine, Nathan ; Baum, Claire ; Georgakopoulos, Alexandros ; Simon, Jonathan</creator><creatorcontrib>Clark, Logan W. ; Jia, Ningyuan ; Schine, Nathan ; Baum, Claire ; Georgakopoulos, Alexandros ; Simon, Jonathan</creatorcontrib><description>Ordinarily, photons do not interact with one another. However, atoms can be used to mediate photonic interactions
1
,
2
, raising the prospect of forming synthetic materials
3
and quantum information systems
4
–
7
from photons. One promising approach combines highly excited Rydberg atoms
8
–
12
with the enhanced light–matter coupling of an optical cavity to convert photons into strongly interacting polaritons
13
–
15
. However, quantum materials made of optical photons have not yet been realized, because the experimental challenge of coupling a suitable atomic sample with a degenerate cavity has constrained cavity polaritons to a single spatial mode that is resonant with an atomic transition. Here we use Floquet engineering
16
,
17
—the periodic modulation of a quantum system—to enable strongly interacting polaritons to access multiple spatial modes of an optical cavity. First, we show that periodically modulating an excited state of rubidium splits its spectral weight to generate new lines—beyond those that are ordinarily characteristic of the atom—separated by multiples of the modulation frequency. Second, we use this capability to simultaneously generate spectral lines that are resonant with two chosen spatial modes of a non-degenerate optical cavity, enabling what we name ‘Floquet polaritons’ to exist in both modes. Because both spectral lines correspond to the same Floquet-engineered atomic state, adding a single-frequency field is sufficient to couple both modes to a Rydberg excitation. We demonstrate that the resulting polaritons interact strongly in both cavity modes simultaneously. The production of Floquet polaritons provides a promising new route to the realization of ordered states of strongly correlated photons, including crystals and topological fluids, as well as quantum information technologies such as multimode photon-by-photon switching.
Frequency modulation is used to create ‘Floquet polaritons’—strongly interacting quasi-particles that exist in a customizable set of modes.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-019-1354-5</identifier><identifier>PMID: 31270460</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/125 ; 639/624/400/2797 ; 639/766/36/1121 ; 639/766/36/1125 ; 639/766/483/3925 ; 639/766/483/3926 ; Atoms & subatomic particles ; Crystals ; Engineering ; Humanities and Social Sciences ; Instability ; Lasers ; Letter ; Modulation ; Modulators ; multidisciplinary ; Phase transitions ; Photons ; Physics ; Polaritons ; Quantum phenomena ; Quantum theory ; Science ; Science (multidisciplinary)</subject><ispartof>Nature (London), 2019-07, Vol.571 (7766), p.532-536</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><rights>COPYRIGHT 2019 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Jul 25, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c574t-100ab89b3ee2ed08dca5a411f50973aa4695935dc44cf6b40ab2753bb96009c03</citedby><cites>FETCH-LOGICAL-c574t-100ab89b3ee2ed08dca5a411f50973aa4695935dc44cf6b40ab2753bb96009c03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31270460$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Clark, Logan W.</creatorcontrib><creatorcontrib>Jia, Ningyuan</creatorcontrib><creatorcontrib>Schine, Nathan</creatorcontrib><creatorcontrib>Baum, Claire</creatorcontrib><creatorcontrib>Georgakopoulos, Alexandros</creatorcontrib><creatorcontrib>Simon, Jonathan</creatorcontrib><title>Interacting Floquet polaritons</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Ordinarily, photons do not interact with one another. However, atoms can be used to mediate photonic interactions
1
,
2
, raising the prospect of forming synthetic materials
3
and quantum information systems
4
–
7
from photons. One promising approach combines highly excited Rydberg atoms
8
–
12
with the enhanced light–matter coupling of an optical cavity to convert photons into strongly interacting polaritons
13
–
15
. However, quantum materials made of optical photons have not yet been realized, because the experimental challenge of coupling a suitable atomic sample with a degenerate cavity has constrained cavity polaritons to a single spatial mode that is resonant with an atomic transition. Here we use Floquet engineering
16
,
17
—the periodic modulation of a quantum system—to enable strongly interacting polaritons to access multiple spatial modes of an optical cavity. First, we show that periodically modulating an excited state of rubidium splits its spectral weight to generate new lines—beyond those that are ordinarily characteristic of the atom—separated by multiples of the modulation frequency. Second, we use this capability to simultaneously generate spectral lines that are resonant with two chosen spatial modes of a non-degenerate optical cavity, enabling what we name ‘Floquet polaritons’ to exist in both modes. Because both spectral lines correspond to the same Floquet-engineered atomic state, adding a single-frequency field is sufficient to couple both modes to a Rydberg excitation. We demonstrate that the resulting polaritons interact strongly in both cavity modes simultaneously. The production of Floquet polaritons provides a promising new route to the realization of ordered states of strongly correlated photons, including crystals and topological fluids, as well as quantum information technologies such as multimode photon-by-photon switching.
Frequency modulation is used to create ‘Floquet polaritons’—strongly interacting quasi-particles that exist in a customizable set of modes.</description><subject>140/125</subject><subject>639/624/400/2797</subject><subject>639/766/36/1121</subject><subject>639/766/36/1125</subject><subject>639/766/483/3925</subject><subject>639/766/483/3926</subject><subject>Atoms & subatomic particles</subject><subject>Crystals</subject><subject>Engineering</subject><subject>Humanities and Social Sciences</subject><subject>Instability</subject><subject>Lasers</subject><subject>Letter</subject><subject>Modulation</subject><subject>Modulators</subject><subject>multidisciplinary</subject><subject>Phase transitions</subject><subject>Photons</subject><subject>Physics</subject><subject>Polaritons</subject><subject>Quantum phenomena</subject><subject>Quantum theory</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp10u9L3DAYB_AwJvN0-wP2RmS-USTuyc82L4_D0wNxsDn2MqRpWiq99ExScP_9cpxOT076otB8ni9J-kXoK4ELAqz8HjkRpcRAFCZMcCw-oAnhhcRclsVHNAGgJYaSyX10EOM9AAhS8E9onxFaAJcwQUcLn1wwNnW-PZ73w8Po0vFq6E3o0uDjZ7TXmD66L0_vQ_R7fnk3u8Y3P64Ws-kNtqLgCRMAU5WqYs5RV0NZWyMMJ6QRoApmDJdKKCZqy7ltZMWzpoVgVaUkgLLADtHpJncV1luISS-7aF3fG--GMWpKBaWSc8EzPXlD74cx-Ly7rGSRT84VvKjW9E53vhlSPuU6VE-FykFSEZUV3qFa5_OV9IN3TZc_b_lvO7xddQ_6NbrYgfJTu2Vnd6aebQ1kk9xjas0Yo178-rltz9-307s_s9ttTTbahiHG4Bq9Ct3ShL-agF5XSG8qpHOF9LpCWuSZo6f7Haulq_9PPHcmA7oBMS_51oWXH_B-6j-o1MmE</recordid><startdate>201907</startdate><enddate>201907</enddate><creator>Clark, Logan W.</creator><creator>Jia, Ningyuan</creator><creator>Schine, Nathan</creator><creator>Baum, Claire</creator><creator>Georgakopoulos, Alexandros</creator><creator>Simon, Jonathan</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>201907</creationdate><title>Interacting Floquet polaritons</title><author>Clark, Logan W. ; Jia, Ningyuan ; Schine, Nathan ; Baum, Claire ; Georgakopoulos, Alexandros ; Simon, Jonathan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c574t-100ab89b3ee2ed08dca5a411f50973aa4695935dc44cf6b40ab2753bb96009c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>140/125</topic><topic>639/624/400/2797</topic><topic>639/766/36/1121</topic><topic>639/766/36/1125</topic><topic>639/766/483/3925</topic><topic>639/766/483/3926</topic><topic>Atoms & subatomic particles</topic><topic>Crystals</topic><topic>Engineering</topic><topic>Humanities and Social Sciences</topic><topic>Instability</topic><topic>Lasers</topic><topic>Letter</topic><topic>Modulation</topic><topic>Modulators</topic><topic>multidisciplinary</topic><topic>Phase transitions</topic><topic>Photons</topic><topic>Physics</topic><topic>Polaritons</topic><topic>Quantum phenomena</topic><topic>Quantum theory</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Clark, Logan W.</creatorcontrib><creatorcontrib>Jia, Ningyuan</creatorcontrib><creatorcontrib>Schine, Nathan</creatorcontrib><creatorcontrib>Baum, Claire</creatorcontrib><creatorcontrib>Georgakopoulos, Alexandros</creatorcontrib><creatorcontrib>Simon, Jonathan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Clark, Logan W.</au><au>Jia, Ningyuan</au><au>Schine, Nathan</au><au>Baum, Claire</au><au>Georgakopoulos, Alexandros</au><au>Simon, Jonathan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interacting Floquet polaritons</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2019-07</date><risdate>2019</risdate><volume>571</volume><issue>7766</issue><spage>532</spage><epage>536</epage><pages>532-536</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>Ordinarily, photons do not interact with one another. However, atoms can be used to mediate photonic interactions
1
,
2
, raising the prospect of forming synthetic materials
3
and quantum information systems
4
–
7
from photons. One promising approach combines highly excited Rydberg atoms
8
–
12
with the enhanced light–matter coupling of an optical cavity to convert photons into strongly interacting polaritons
13
–
15
. However, quantum materials made of optical photons have not yet been realized, because the experimental challenge of coupling a suitable atomic sample with a degenerate cavity has constrained cavity polaritons to a single spatial mode that is resonant with an atomic transition. Here we use Floquet engineering
16
,
17
—the periodic modulation of a quantum system—to enable strongly interacting polaritons to access multiple spatial modes of an optical cavity. First, we show that periodically modulating an excited state of rubidium splits its spectral weight to generate new lines—beyond those that are ordinarily characteristic of the atom—separated by multiples of the modulation frequency. Second, we use this capability to simultaneously generate spectral lines that are resonant with two chosen spatial modes of a non-degenerate optical cavity, enabling what we name ‘Floquet polaritons’ to exist in both modes. Because both spectral lines correspond to the same Floquet-engineered atomic state, adding a single-frequency field is sufficient to couple both modes to a Rydberg excitation. We demonstrate that the resulting polaritons interact strongly in both cavity modes simultaneously. The production of Floquet polaritons provides a promising new route to the realization of ordered states of strongly correlated photons, including crystals and topological fluids, as well as quantum information technologies such as multimode photon-by-photon switching.
Frequency modulation is used to create ‘Floquet polaritons’—strongly interacting quasi-particles that exist in a customizable set of modes.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31270460</pmid><doi>10.1038/s41586-019-1354-5</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2019-07, Vol.571 (7766), p.532-536 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_proquest_miscellaneous_2252264454 |
source | Nature; Alma/SFX Local Collection |
subjects | 140/125 639/624/400/2797 639/766/36/1121 639/766/36/1125 639/766/483/3925 639/766/483/3926 Atoms & subatomic particles Crystals Engineering Humanities and Social Sciences Instability Lasers Letter Modulation Modulators multidisciplinary Phase transitions Photons Physics Polaritons Quantum phenomena Quantum theory Science Science (multidisciplinary) |
title | Interacting Floquet polaritons |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T11%3A21%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interacting%20Floquet%20polaritons&rft.jtitle=Nature%20(London)&rft.au=Clark,%20Logan%20W.&rft.date=2019-07&rft.volume=571&rft.issue=7766&rft.spage=532&rft.epage=536&rft.pages=532-536&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-019-1354-5&rft_dat=%3Cgale_proqu%3EA594456919%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2267687490&rft_id=info:pmid/31270460&rft_galeid=A594456919&rfr_iscdi=true |