Semiconductor Quantum Dots: An Emerging Candidate for CO2 Photoreduction
As one of the most critical approaches to resolve the energy crisis and environmental concerns, carbon dioxide (CO2) photoreduction into value‐added chemicals and solar fuels (for example, CO, HCOOH, CH3OH, CH4) has attracted more and more attention. In nature, photosynthetic organisms effectively c...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2019-09, Vol.31 (36), p.e1900709-n/a |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 36 |
container_start_page | e1900709 |
container_title | Advanced materials (Weinheim) |
container_volume | 31 |
creator | Wu, Hao‐Lin Li, Xu‐Bing Tung, Chen‐Ho Wu, Li‐Zhu |
description | As one of the most critical approaches to resolve the energy crisis and environmental concerns, carbon dioxide (CO2) photoreduction into value‐added chemicals and solar fuels (for example, CO, HCOOH, CH3OH, CH4) has attracted more and more attention. In nature, photosynthetic organisms effectively convert CO2 and H2O to carbohydrates and oxygen (O2) using sunlight, which has inspired the development of low‐cost, stable, and effective artificial photocatalysts for CO2 photoreduction. Due to their low cost, facile synthesis, excellent light harvesting, multiple exciton generation, feasible charge‐carrier regulation, and abundant surface sites, semiconductor quantum dots (QDs) have recently been identified as one of the most promising materials for establishing highly efficient artificial photosystems. Recent advances in CO2 photoreduction using semiconductor QDs are highlighted. First, the unique photophysical and structural properties of semiconductor QDs, which enable their versatile applications in solar energy conversion, are analyzed. Recent applications of QDs in photocatalytic CO2 reduction are then introduced in three categories: binary II–VI semiconductor QDs (e.g., CdSe, CdS, and ZnSe), ternary I–III–VI semiconductor QDs (e.g., CuInS2 and CuAlS2), and perovskite‐type QDs (e.g., CsPbBr3, CH3NH3PbBr3, and Cs2AgBiBr6). Finally, the challenges and prospects in solar CO2 reduction with QDs in the future are discussed.
Carbon dioxide (CO2) photoreduction is regarded as an attractive pathway to produce value‐added chemicals and fuels. Recent advances in CO2 photoreduction via semiconductor quantum dots (QDs) in three categories are reviewed: II–VI, I–III–VI, and perovskite‐type QDs. Additionally, current challenges and prospects for QD‐photocatalyzed CO2 reduction are discussed. |
doi_str_mv | 10.1002/adma.201900709 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_2252242987</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2283254826</sourcerecordid><originalsourceid>FETCH-LOGICAL-g3699-ae11620b703f9382b56a159e757c4e30608fc662661879c0a33f681705a808503</originalsourceid><addsrcrecordid>eNpd0E1Lw0AQBuBFFKzVq-cFL15SZ3ezX95CWq1QqaKel22yqSnJbs0Hpf_elEoPnoaB5x2GF6FbAhMCQB9sXtsJBaIBJOgzNCKckigGzc_RCDTjkRaxukRXbbsBAC1AjND8w9VlFnzeZ11o8HtvfdfXeBq69hEnHs9q16xLv8ap9XmZ287hYnDpkuK37zBE3CFZBn-NLgpbte7mb47R19PsM51Hi-XzS5osojUTWkfWESIorCSwQjNFV1xYwrWTXGaxYyBAFZkQVAiipM7AMlYIRSRwq0BxYGN0f7y7bcJP79rO1GWbuaqy3oW-NZRySmOqlRzo3T-6CX3jh-8GpRjlsaJiUPqodmXl9mbblLVt9oaAObRqDq2aU6smmb4mp439Aie0amc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2283254826</pqid></control><display><type>article</type><title>Semiconductor Quantum Dots: An Emerging Candidate for CO2 Photoreduction</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wu, Hao‐Lin ; Li, Xu‐Bing ; Tung, Chen‐Ho ; Wu, Li‐Zhu</creator><creatorcontrib>Wu, Hao‐Lin ; Li, Xu‐Bing ; Tung, Chen‐Ho ; Wu, Li‐Zhu</creatorcontrib><description>As one of the most critical approaches to resolve the energy crisis and environmental concerns, carbon dioxide (CO2) photoreduction into value‐added chemicals and solar fuels (for example, CO, HCOOH, CH3OH, CH4) has attracted more and more attention. In nature, photosynthetic organisms effectively convert CO2 and H2O to carbohydrates and oxygen (O2) using sunlight, which has inspired the development of low‐cost, stable, and effective artificial photocatalysts for CO2 photoreduction. Due to their low cost, facile synthesis, excellent light harvesting, multiple exciton generation, feasible charge‐carrier regulation, and abundant surface sites, semiconductor quantum dots (QDs) have recently been identified as one of the most promising materials for establishing highly efficient artificial photosystems. Recent advances in CO2 photoreduction using semiconductor QDs are highlighted. First, the unique photophysical and structural properties of semiconductor QDs, which enable their versatile applications in solar energy conversion, are analyzed. Recent applications of QDs in photocatalytic CO2 reduction are then introduced in three categories: binary II–VI semiconductor QDs (e.g., CdSe, CdS, and ZnSe), ternary I–III–VI semiconductor QDs (e.g., CuInS2 and CuAlS2), and perovskite‐type QDs (e.g., CsPbBr3, CH3NH3PbBr3, and Cs2AgBiBr6). Finally, the challenges and prospects in solar CO2 reduction with QDs in the future are discussed.
Carbon dioxide (CO2) photoreduction is regarded as an attractive pathway to produce value‐added chemicals and fuels. Recent advances in CO2 photoreduction via semiconductor quantum dots (QDs) in three categories are reviewed: II–VI, I–III–VI, and perovskite‐type QDs. Additionally, current challenges and prospects for QD‐photocatalyzed CO2 reduction are discussed.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.201900709</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Cadmium selenides ; Carbohydrates ; Carbon dioxide ; CO2 photoreduction ; Current carriers ; Electrons ; Excitons ; Materials science ; Organic chemistry ; Perovskites ; Photocatalysis ; Photochemistry ; Photosynthesis ; Quantum dots ; Reduction ; semiconductor QDs ; Solar energy conversion ; solar‐to‐fuel conversion ; Zinc selenide</subject><ispartof>Advanced materials (Weinheim), 2019-09, Vol.31 (36), p.e1900709-n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-5561-9922</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.201900709$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.201900709$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Wu, Hao‐Lin</creatorcontrib><creatorcontrib>Li, Xu‐Bing</creatorcontrib><creatorcontrib>Tung, Chen‐Ho</creatorcontrib><creatorcontrib>Wu, Li‐Zhu</creatorcontrib><title>Semiconductor Quantum Dots: An Emerging Candidate for CO2 Photoreduction</title><title>Advanced materials (Weinheim)</title><description>As one of the most critical approaches to resolve the energy crisis and environmental concerns, carbon dioxide (CO2) photoreduction into value‐added chemicals and solar fuels (for example, CO, HCOOH, CH3OH, CH4) has attracted more and more attention. In nature, photosynthetic organisms effectively convert CO2 and H2O to carbohydrates and oxygen (O2) using sunlight, which has inspired the development of low‐cost, stable, and effective artificial photocatalysts for CO2 photoreduction. Due to their low cost, facile synthesis, excellent light harvesting, multiple exciton generation, feasible charge‐carrier regulation, and abundant surface sites, semiconductor quantum dots (QDs) have recently been identified as one of the most promising materials for establishing highly efficient artificial photosystems. Recent advances in CO2 photoreduction using semiconductor QDs are highlighted. First, the unique photophysical and structural properties of semiconductor QDs, which enable their versatile applications in solar energy conversion, are analyzed. Recent applications of QDs in photocatalytic CO2 reduction are then introduced in three categories: binary II–VI semiconductor QDs (e.g., CdSe, CdS, and ZnSe), ternary I–III–VI semiconductor QDs (e.g., CuInS2 and CuAlS2), and perovskite‐type QDs (e.g., CsPbBr3, CH3NH3PbBr3, and Cs2AgBiBr6). Finally, the challenges and prospects in solar CO2 reduction with QDs in the future are discussed.
Carbon dioxide (CO2) photoreduction is regarded as an attractive pathway to produce value‐added chemicals and fuels. Recent advances in CO2 photoreduction via semiconductor quantum dots (QDs) in three categories are reviewed: II–VI, I–III–VI, and perovskite‐type QDs. Additionally, current challenges and prospects for QD‐photocatalyzed CO2 reduction are discussed.</description><subject>Cadmium selenides</subject><subject>Carbohydrates</subject><subject>Carbon dioxide</subject><subject>CO2 photoreduction</subject><subject>Current carriers</subject><subject>Electrons</subject><subject>Excitons</subject><subject>Materials science</subject><subject>Organic chemistry</subject><subject>Perovskites</subject><subject>Photocatalysis</subject><subject>Photochemistry</subject><subject>Photosynthesis</subject><subject>Quantum dots</subject><subject>Reduction</subject><subject>semiconductor QDs</subject><subject>Solar energy conversion</subject><subject>solar‐to‐fuel conversion</subject><subject>Zinc selenide</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpd0E1Lw0AQBuBFFKzVq-cFL15SZ3ezX95CWq1QqaKel22yqSnJbs0Hpf_elEoPnoaB5x2GF6FbAhMCQB9sXtsJBaIBJOgzNCKckigGzc_RCDTjkRaxukRXbbsBAC1AjND8w9VlFnzeZ11o8HtvfdfXeBq69hEnHs9q16xLv8ap9XmZ287hYnDpkuK37zBE3CFZBn-NLgpbte7mb47R19PsM51Hi-XzS5osojUTWkfWESIorCSwQjNFV1xYwrWTXGaxYyBAFZkQVAiipM7AMlYIRSRwq0BxYGN0f7y7bcJP79rO1GWbuaqy3oW-NZRySmOqlRzo3T-6CX3jh-8GpRjlsaJiUPqodmXl9mbblLVt9oaAObRqDq2aU6smmb4mp439Aie0amc</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Wu, Hao‐Lin</creator><creator>Li, Xu‐Bing</creator><creator>Tung, Chen‐Ho</creator><creator>Wu, Li‐Zhu</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5561-9922</orcidid></search><sort><creationdate>20190901</creationdate><title>Semiconductor Quantum Dots: An Emerging Candidate for CO2 Photoreduction</title><author>Wu, Hao‐Lin ; Li, Xu‐Bing ; Tung, Chen‐Ho ; Wu, Li‐Zhu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g3699-ae11620b703f9382b56a159e757c4e30608fc662661879c0a33f681705a808503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Cadmium selenides</topic><topic>Carbohydrates</topic><topic>Carbon dioxide</topic><topic>CO2 photoreduction</topic><topic>Current carriers</topic><topic>Electrons</topic><topic>Excitons</topic><topic>Materials science</topic><topic>Organic chemistry</topic><topic>Perovskites</topic><topic>Photocatalysis</topic><topic>Photochemistry</topic><topic>Photosynthesis</topic><topic>Quantum dots</topic><topic>Reduction</topic><topic>semiconductor QDs</topic><topic>Solar energy conversion</topic><topic>solar‐to‐fuel conversion</topic><topic>Zinc selenide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Hao‐Lin</creatorcontrib><creatorcontrib>Li, Xu‐Bing</creatorcontrib><creatorcontrib>Tung, Chen‐Ho</creatorcontrib><creatorcontrib>Wu, Li‐Zhu</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Hao‐Lin</au><au>Li, Xu‐Bing</au><au>Tung, Chen‐Ho</au><au>Wu, Li‐Zhu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semiconductor Quantum Dots: An Emerging Candidate for CO2 Photoreduction</atitle><jtitle>Advanced materials (Weinheim)</jtitle><date>2019-09-01</date><risdate>2019</risdate><volume>31</volume><issue>36</issue><spage>e1900709</spage><epage>n/a</epage><pages>e1900709-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>As one of the most critical approaches to resolve the energy crisis and environmental concerns, carbon dioxide (CO2) photoreduction into value‐added chemicals and solar fuels (for example, CO, HCOOH, CH3OH, CH4) has attracted more and more attention. In nature, photosynthetic organisms effectively convert CO2 and H2O to carbohydrates and oxygen (O2) using sunlight, which has inspired the development of low‐cost, stable, and effective artificial photocatalysts for CO2 photoreduction. Due to their low cost, facile synthesis, excellent light harvesting, multiple exciton generation, feasible charge‐carrier regulation, and abundant surface sites, semiconductor quantum dots (QDs) have recently been identified as one of the most promising materials for establishing highly efficient artificial photosystems. Recent advances in CO2 photoreduction using semiconductor QDs are highlighted. First, the unique photophysical and structural properties of semiconductor QDs, which enable their versatile applications in solar energy conversion, are analyzed. Recent applications of QDs in photocatalytic CO2 reduction are then introduced in three categories: binary II–VI semiconductor QDs (e.g., CdSe, CdS, and ZnSe), ternary I–III–VI semiconductor QDs (e.g., CuInS2 and CuAlS2), and perovskite‐type QDs (e.g., CsPbBr3, CH3NH3PbBr3, and Cs2AgBiBr6). Finally, the challenges and prospects in solar CO2 reduction with QDs in the future are discussed.
Carbon dioxide (CO2) photoreduction is regarded as an attractive pathway to produce value‐added chemicals and fuels. Recent advances in CO2 photoreduction via semiconductor quantum dots (QDs) in three categories are reviewed: II–VI, I–III–VI, and perovskite‐type QDs. Additionally, current challenges and prospects for QD‐photocatalyzed CO2 reduction are discussed.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adma.201900709</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-5561-9922</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2019-09, Vol.31 (36), p.e1900709-n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_proquest_miscellaneous_2252242987 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Cadmium selenides Carbohydrates Carbon dioxide CO2 photoreduction Current carriers Electrons Excitons Materials science Organic chemistry Perovskites Photocatalysis Photochemistry Photosynthesis Quantum dots Reduction semiconductor QDs Solar energy conversion solar‐to‐fuel conversion Zinc selenide |
title | Semiconductor Quantum Dots: An Emerging Candidate for CO2 Photoreduction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T14%3A53%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semiconductor%20Quantum%20Dots:%20An%20Emerging%20Candidate%20for%20CO2%20Photoreduction&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Wu,%20Hao%E2%80%90Lin&rft.date=2019-09-01&rft.volume=31&rft.issue=36&rft.spage=e1900709&rft.epage=n/a&rft.pages=e1900709-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.201900709&rft_dat=%3Cproquest_wiley%3E2283254826%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2283254826&rft_id=info:pmid/&rfr_iscdi=true |