Semiconductor Quantum Dots: An Emerging Candidate for CO2 Photoreduction

As one of the most critical approaches to resolve the energy crisis and environmental concerns, carbon dioxide (CO2) photoreduction into value‐added chemicals and solar fuels (for example, CO, HCOOH, CH3OH, CH4) has attracted more and more attention. In nature, photosynthetic organisms effectively c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2019-09, Vol.31 (36), p.e1900709-n/a
Hauptverfasser: Wu, Hao‐Lin, Li, Xu‐Bing, Tung, Chen‐Ho, Wu, Li‐Zhu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 36
container_start_page e1900709
container_title Advanced materials (Weinheim)
container_volume 31
creator Wu, Hao‐Lin
Li, Xu‐Bing
Tung, Chen‐Ho
Wu, Li‐Zhu
description As one of the most critical approaches to resolve the energy crisis and environmental concerns, carbon dioxide (CO2) photoreduction into value‐added chemicals and solar fuels (for example, CO, HCOOH, CH3OH, CH4) has attracted more and more attention. In nature, photosynthetic organisms effectively convert CO2 and H2O to carbohydrates and oxygen (O2) using sunlight, which has inspired the development of low‐cost, stable, and effective artificial photocatalysts for CO2 photoreduction. Due to their low cost, facile synthesis, excellent light harvesting, multiple exciton generation, feasible charge‐carrier regulation, and abundant surface sites, semiconductor quantum dots (QDs) have recently been identified as one of the most promising materials for establishing highly efficient artificial photosystems. Recent advances in CO2 photoreduction using semiconductor QDs are highlighted. First, the unique photophysical and structural properties of semiconductor QDs, which enable their versatile applications in solar energy conversion, are analyzed. Recent applications of QDs in photocatalytic CO2 reduction are then introduced in three categories: binary II–VI semiconductor QDs (e.g., CdSe, CdS, and ZnSe), ternary I–III–VI semiconductor QDs (e.g., CuInS2 and CuAlS2), and perovskite‐type QDs (e.g., CsPbBr3, CH3NH3PbBr3, and Cs2AgBiBr6). Finally, the challenges and prospects in solar CO2 reduction with QDs in the future are discussed. Carbon dioxide (CO2) photoreduction is regarded as an attractive pathway to produce value‐added chemicals and fuels. Recent advances in CO2 photoreduction via semiconductor quantum dots (QDs) in three categories are reviewed: II–VI, I–III–VI, and perovskite‐type QDs. Additionally, current challenges and prospects for QD‐photocatalyzed CO2 reduction are discussed.
doi_str_mv 10.1002/adma.201900709
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_2252242987</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2283254826</sourcerecordid><originalsourceid>FETCH-LOGICAL-g3699-ae11620b703f9382b56a159e757c4e30608fc662661879c0a33f681705a808503</originalsourceid><addsrcrecordid>eNpd0E1Lw0AQBuBFFKzVq-cFL15SZ3ezX95CWq1QqaKel22yqSnJbs0Hpf_elEoPnoaB5x2GF6FbAhMCQB9sXtsJBaIBJOgzNCKckigGzc_RCDTjkRaxukRXbbsBAC1AjND8w9VlFnzeZ11o8HtvfdfXeBq69hEnHs9q16xLv8ap9XmZ287hYnDpkuK37zBE3CFZBn-NLgpbte7mb47R19PsM51Hi-XzS5osojUTWkfWESIorCSwQjNFV1xYwrWTXGaxYyBAFZkQVAiipM7AMlYIRSRwq0BxYGN0f7y7bcJP79rO1GWbuaqy3oW-NZRySmOqlRzo3T-6CX3jh-8GpRjlsaJiUPqodmXl9mbblLVt9oaAObRqDq2aU6smmb4mp439Aie0amc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2283254826</pqid></control><display><type>article</type><title>Semiconductor Quantum Dots: An Emerging Candidate for CO2 Photoreduction</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wu, Hao‐Lin ; Li, Xu‐Bing ; Tung, Chen‐Ho ; Wu, Li‐Zhu</creator><creatorcontrib>Wu, Hao‐Lin ; Li, Xu‐Bing ; Tung, Chen‐Ho ; Wu, Li‐Zhu</creatorcontrib><description>As one of the most critical approaches to resolve the energy crisis and environmental concerns, carbon dioxide (CO2) photoreduction into value‐added chemicals and solar fuels (for example, CO, HCOOH, CH3OH, CH4) has attracted more and more attention. In nature, photosynthetic organisms effectively convert CO2 and H2O to carbohydrates and oxygen (O2) using sunlight, which has inspired the development of low‐cost, stable, and effective artificial photocatalysts for CO2 photoreduction. Due to their low cost, facile synthesis, excellent light harvesting, multiple exciton generation, feasible charge‐carrier regulation, and abundant surface sites, semiconductor quantum dots (QDs) have recently been identified as one of the most promising materials for establishing highly efficient artificial photosystems. Recent advances in CO2 photoreduction using semiconductor QDs are highlighted. First, the unique photophysical and structural properties of semiconductor QDs, which enable their versatile applications in solar energy conversion, are analyzed. Recent applications of QDs in photocatalytic CO2 reduction are then introduced in three categories: binary II–VI semiconductor QDs (e.g., CdSe, CdS, and ZnSe), ternary I–III–VI semiconductor QDs (e.g., CuInS2 and CuAlS2), and perovskite‐type QDs (e.g., CsPbBr3, CH3NH3PbBr3, and Cs2AgBiBr6). Finally, the challenges and prospects in solar CO2 reduction with QDs in the future are discussed. Carbon dioxide (CO2) photoreduction is regarded as an attractive pathway to produce value‐added chemicals and fuels. Recent advances in CO2 photoreduction via semiconductor quantum dots (QDs) in three categories are reviewed: II–VI, I–III–VI, and perovskite‐type QDs. Additionally, current challenges and prospects for QD‐photocatalyzed CO2 reduction are discussed.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.201900709</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Cadmium selenides ; Carbohydrates ; Carbon dioxide ; CO2 photoreduction ; Current carriers ; Electrons ; Excitons ; Materials science ; Organic chemistry ; Perovskites ; Photocatalysis ; Photochemistry ; Photosynthesis ; Quantum dots ; Reduction ; semiconductor QDs ; Solar energy conversion ; solar‐to‐fuel conversion ; Zinc selenide</subject><ispartof>Advanced materials (Weinheim), 2019-09, Vol.31 (36), p.e1900709-n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-5561-9922</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.201900709$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.201900709$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Wu, Hao‐Lin</creatorcontrib><creatorcontrib>Li, Xu‐Bing</creatorcontrib><creatorcontrib>Tung, Chen‐Ho</creatorcontrib><creatorcontrib>Wu, Li‐Zhu</creatorcontrib><title>Semiconductor Quantum Dots: An Emerging Candidate for CO2 Photoreduction</title><title>Advanced materials (Weinheim)</title><description>As one of the most critical approaches to resolve the energy crisis and environmental concerns, carbon dioxide (CO2) photoreduction into value‐added chemicals and solar fuels (for example, CO, HCOOH, CH3OH, CH4) has attracted more and more attention. In nature, photosynthetic organisms effectively convert CO2 and H2O to carbohydrates and oxygen (O2) using sunlight, which has inspired the development of low‐cost, stable, and effective artificial photocatalysts for CO2 photoreduction. Due to their low cost, facile synthesis, excellent light harvesting, multiple exciton generation, feasible charge‐carrier regulation, and abundant surface sites, semiconductor quantum dots (QDs) have recently been identified as one of the most promising materials for establishing highly efficient artificial photosystems. Recent advances in CO2 photoreduction using semiconductor QDs are highlighted. First, the unique photophysical and structural properties of semiconductor QDs, which enable their versatile applications in solar energy conversion, are analyzed. Recent applications of QDs in photocatalytic CO2 reduction are then introduced in three categories: binary II–VI semiconductor QDs (e.g., CdSe, CdS, and ZnSe), ternary I–III–VI semiconductor QDs (e.g., CuInS2 and CuAlS2), and perovskite‐type QDs (e.g., CsPbBr3, CH3NH3PbBr3, and Cs2AgBiBr6). Finally, the challenges and prospects in solar CO2 reduction with QDs in the future are discussed. Carbon dioxide (CO2) photoreduction is regarded as an attractive pathway to produce value‐added chemicals and fuels. Recent advances in CO2 photoreduction via semiconductor quantum dots (QDs) in three categories are reviewed: II–VI, I–III–VI, and perovskite‐type QDs. Additionally, current challenges and prospects for QD‐photocatalyzed CO2 reduction are discussed.</description><subject>Cadmium selenides</subject><subject>Carbohydrates</subject><subject>Carbon dioxide</subject><subject>CO2 photoreduction</subject><subject>Current carriers</subject><subject>Electrons</subject><subject>Excitons</subject><subject>Materials science</subject><subject>Organic chemistry</subject><subject>Perovskites</subject><subject>Photocatalysis</subject><subject>Photochemistry</subject><subject>Photosynthesis</subject><subject>Quantum dots</subject><subject>Reduction</subject><subject>semiconductor QDs</subject><subject>Solar energy conversion</subject><subject>solar‐to‐fuel conversion</subject><subject>Zinc selenide</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpd0E1Lw0AQBuBFFKzVq-cFL15SZ3ezX95CWq1QqaKel22yqSnJbs0Hpf_elEoPnoaB5x2GF6FbAhMCQB9sXtsJBaIBJOgzNCKckigGzc_RCDTjkRaxukRXbbsBAC1AjND8w9VlFnzeZ11o8HtvfdfXeBq69hEnHs9q16xLv8ap9XmZ287hYnDpkuK37zBE3CFZBn-NLgpbte7mb47R19PsM51Hi-XzS5osojUTWkfWESIorCSwQjNFV1xYwrWTXGaxYyBAFZkQVAiipM7AMlYIRSRwq0BxYGN0f7y7bcJP79rO1GWbuaqy3oW-NZRySmOqlRzo3T-6CX3jh-8GpRjlsaJiUPqodmXl9mbblLVt9oaAObRqDq2aU6smmb4mp439Aie0amc</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Wu, Hao‐Lin</creator><creator>Li, Xu‐Bing</creator><creator>Tung, Chen‐Ho</creator><creator>Wu, Li‐Zhu</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5561-9922</orcidid></search><sort><creationdate>20190901</creationdate><title>Semiconductor Quantum Dots: An Emerging Candidate for CO2 Photoreduction</title><author>Wu, Hao‐Lin ; Li, Xu‐Bing ; Tung, Chen‐Ho ; Wu, Li‐Zhu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g3699-ae11620b703f9382b56a159e757c4e30608fc662661879c0a33f681705a808503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Cadmium selenides</topic><topic>Carbohydrates</topic><topic>Carbon dioxide</topic><topic>CO2 photoreduction</topic><topic>Current carriers</topic><topic>Electrons</topic><topic>Excitons</topic><topic>Materials science</topic><topic>Organic chemistry</topic><topic>Perovskites</topic><topic>Photocatalysis</topic><topic>Photochemistry</topic><topic>Photosynthesis</topic><topic>Quantum dots</topic><topic>Reduction</topic><topic>semiconductor QDs</topic><topic>Solar energy conversion</topic><topic>solar‐to‐fuel conversion</topic><topic>Zinc selenide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Hao‐Lin</creatorcontrib><creatorcontrib>Li, Xu‐Bing</creatorcontrib><creatorcontrib>Tung, Chen‐Ho</creatorcontrib><creatorcontrib>Wu, Li‐Zhu</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Hao‐Lin</au><au>Li, Xu‐Bing</au><au>Tung, Chen‐Ho</au><au>Wu, Li‐Zhu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semiconductor Quantum Dots: An Emerging Candidate for CO2 Photoreduction</atitle><jtitle>Advanced materials (Weinheim)</jtitle><date>2019-09-01</date><risdate>2019</risdate><volume>31</volume><issue>36</issue><spage>e1900709</spage><epage>n/a</epage><pages>e1900709-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>As one of the most critical approaches to resolve the energy crisis and environmental concerns, carbon dioxide (CO2) photoreduction into value‐added chemicals and solar fuels (for example, CO, HCOOH, CH3OH, CH4) has attracted more and more attention. In nature, photosynthetic organisms effectively convert CO2 and H2O to carbohydrates and oxygen (O2) using sunlight, which has inspired the development of low‐cost, stable, and effective artificial photocatalysts for CO2 photoreduction. Due to their low cost, facile synthesis, excellent light harvesting, multiple exciton generation, feasible charge‐carrier regulation, and abundant surface sites, semiconductor quantum dots (QDs) have recently been identified as one of the most promising materials for establishing highly efficient artificial photosystems. Recent advances in CO2 photoreduction using semiconductor QDs are highlighted. First, the unique photophysical and structural properties of semiconductor QDs, which enable their versatile applications in solar energy conversion, are analyzed. Recent applications of QDs in photocatalytic CO2 reduction are then introduced in three categories: binary II–VI semiconductor QDs (e.g., CdSe, CdS, and ZnSe), ternary I–III–VI semiconductor QDs (e.g., CuInS2 and CuAlS2), and perovskite‐type QDs (e.g., CsPbBr3, CH3NH3PbBr3, and Cs2AgBiBr6). Finally, the challenges and prospects in solar CO2 reduction with QDs in the future are discussed. Carbon dioxide (CO2) photoreduction is regarded as an attractive pathway to produce value‐added chemicals and fuels. Recent advances in CO2 photoreduction via semiconductor quantum dots (QDs) in three categories are reviewed: II–VI, I–III–VI, and perovskite‐type QDs. Additionally, current challenges and prospects for QD‐photocatalyzed CO2 reduction are discussed.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adma.201900709</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-5561-9922</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2019-09, Vol.31 (36), p.e1900709-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2252242987
source Wiley Online Library Journals Frontfile Complete
subjects Cadmium selenides
Carbohydrates
Carbon dioxide
CO2 photoreduction
Current carriers
Electrons
Excitons
Materials science
Organic chemistry
Perovskites
Photocatalysis
Photochemistry
Photosynthesis
Quantum dots
Reduction
semiconductor QDs
Solar energy conversion
solar‐to‐fuel conversion
Zinc selenide
title Semiconductor Quantum Dots: An Emerging Candidate for CO2 Photoreduction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T14%3A53%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semiconductor%20Quantum%20Dots:%20An%20Emerging%20Candidate%20for%20CO2%20Photoreduction&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Wu,%20Hao%E2%80%90Lin&rft.date=2019-09-01&rft.volume=31&rft.issue=36&rft.spage=e1900709&rft.epage=n/a&rft.pages=e1900709-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.201900709&rft_dat=%3Cproquest_wiley%3E2283254826%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2283254826&rft_id=info:pmid/&rfr_iscdi=true