Origin of Nanoscale Friction Contrast between Supported Graphene, MoS2, and a Graphene/MoS2 Heterostructure

Ultralow friction can be achieved with 2D materials, particularly graphene and MoS2. The nanotribological properties of these different 2D materials have been measured in previous atomic force microscope (AFM) experiments sequentially, precluding immediate and direct comparison of their frictional b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2019-08, Vol.19 (8), p.5496-5505
Hauptverfasser: Vazirisereshk, Mohammad R, Ye, Han, Ye, Zhijiang, Otero-de-la-Roza, Alberto, Zhao, Meng-Qiang, Gao, Zhaoli, Johnson, A. T. Charlie, Johnson, Erin R, Carpick, Robert W, Martini, Ashlie
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5505
container_issue 8
container_start_page 5496
container_title Nano letters
container_volume 19
creator Vazirisereshk, Mohammad R
Ye, Han
Ye, Zhijiang
Otero-de-la-Roza, Alberto
Zhao, Meng-Qiang
Gao, Zhaoli
Johnson, A. T. Charlie
Johnson, Erin R
Carpick, Robert W
Martini, Ashlie
description Ultralow friction can be achieved with 2D materials, particularly graphene and MoS2. The nanotribological properties of these different 2D materials have been measured in previous atomic force microscope (AFM) experiments sequentially, precluding immediate and direct comparison of their frictional behavior. Here, friction is characterized at the nanoscale using AFM experiments with the same tip sliding over graphene, MoS2, and a graphene/MoS2 heterostructure in a single measurement, repeated hundreds of times, and also measured with a slowly varying normal force. The same material systems are simulated using molecular dynamics (MD) and analyzed using density functional theory (DFT) calculations. In both experiments and MD simulations, graphene consistently exhibits lower friction than the MoS2 monolayer and the heterostructure. In some cases, friction on the heterostructure is lower than that on the MoS2 monolayer. Quasi-static MD simulations and DFT calculations show that the origin of the friction contrast is the difference in energy barriers for a tip sliding across each of the three surfaces.
doi_str_mv 10.1021/acs.nanolett.9b02035
format Article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2251691417</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2251691417</sourcerecordid><originalsourceid>FETCH-LOGICAL-a341t-c515f7887499101a998b1d2b1ad060d2138496392e5c41deb9d302038b6c95b43</originalsourceid><addsrcrecordid>eNo9kLFOwzAQhi0EEqXwBgweGZrWZ8dpPKKKtkiFDoU5cpwrpAQ72I54fRK1dLrTp1-_7j5C7oFNgXGYaROmVlvXYIxTVTLOhLwgI5CCJZlS_PK85-k1uQnhwBhTQrIR-dr6-qO21O3pa98QjG6QLn1tYu0sXTgbvQ6Rlhh_ES3ddW3rfMSKrrxuP9HihL64HZ9QbSuqz3Q2QLrGiN6F6DsTO4-35Gqvm4B3pzkm78unt8U62WxXz4vHTaJFCjExEuR-nufzVClgoJXKS6h4CbpiGas4iDxVmVAcpUmhwlJVYng5LzOjZJmKMXk49rbe_XQYYvFdB4NNoy26LhScS8gUpDDvo-wY7RUWB9d52x9WACsGr8UA_70WJ6_iDy3wbnE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2251691417</pqid></control><display><type>article</type><title>Origin of Nanoscale Friction Contrast between Supported Graphene, MoS2, and a Graphene/MoS2 Heterostructure</title><source>ACS Publications</source><creator>Vazirisereshk, Mohammad R ; Ye, Han ; Ye, Zhijiang ; Otero-de-la-Roza, Alberto ; Zhao, Meng-Qiang ; Gao, Zhaoli ; Johnson, A. T. Charlie ; Johnson, Erin R ; Carpick, Robert W ; Martini, Ashlie</creator><creatorcontrib>Vazirisereshk, Mohammad R ; Ye, Han ; Ye, Zhijiang ; Otero-de-la-Roza, Alberto ; Zhao, Meng-Qiang ; Gao, Zhaoli ; Johnson, A. T. Charlie ; Johnson, Erin R ; Carpick, Robert W ; Martini, Ashlie</creatorcontrib><description>Ultralow friction can be achieved with 2D materials, particularly graphene and MoS2. The nanotribological properties of these different 2D materials have been measured in previous atomic force microscope (AFM) experiments sequentially, precluding immediate and direct comparison of their frictional behavior. Here, friction is characterized at the nanoscale using AFM experiments with the same tip sliding over graphene, MoS2, and a graphene/MoS2 heterostructure in a single measurement, repeated hundreds of times, and also measured with a slowly varying normal force. The same material systems are simulated using molecular dynamics (MD) and analyzed using density functional theory (DFT) calculations. In both experiments and MD simulations, graphene consistently exhibits lower friction than the MoS2 monolayer and the heterostructure. In some cases, friction on the heterostructure is lower than that on the MoS2 monolayer. Quasi-static MD simulations and DFT calculations show that the origin of the friction contrast is the difference in energy barriers for a tip sliding across each of the three surfaces.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.9b02035</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Nano letters, 2019-08, Vol.19 (8), p.5496-5505</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-5651-468X ; 0000-0001-8122-7749 ; 0000-0002-0547-3144 ; 0000-0002-3235-3156 ; 0000-0003-3114-2207 ; 0000-0003-2017-6081 ; 0000-0002-5402-1224</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.9b02035$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.nanolett.9b02035$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Vazirisereshk, Mohammad R</creatorcontrib><creatorcontrib>Ye, Han</creatorcontrib><creatorcontrib>Ye, Zhijiang</creatorcontrib><creatorcontrib>Otero-de-la-Roza, Alberto</creatorcontrib><creatorcontrib>Zhao, Meng-Qiang</creatorcontrib><creatorcontrib>Gao, Zhaoli</creatorcontrib><creatorcontrib>Johnson, A. T. Charlie</creatorcontrib><creatorcontrib>Johnson, Erin R</creatorcontrib><creatorcontrib>Carpick, Robert W</creatorcontrib><creatorcontrib>Martini, Ashlie</creatorcontrib><title>Origin of Nanoscale Friction Contrast between Supported Graphene, MoS2, and a Graphene/MoS2 Heterostructure</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Ultralow friction can be achieved with 2D materials, particularly graphene and MoS2. The nanotribological properties of these different 2D materials have been measured in previous atomic force microscope (AFM) experiments sequentially, precluding immediate and direct comparison of their frictional behavior. Here, friction is characterized at the nanoscale using AFM experiments with the same tip sliding over graphene, MoS2, and a graphene/MoS2 heterostructure in a single measurement, repeated hundreds of times, and also measured with a slowly varying normal force. The same material systems are simulated using molecular dynamics (MD) and analyzed using density functional theory (DFT) calculations. In both experiments and MD simulations, graphene consistently exhibits lower friction than the MoS2 monolayer and the heterostructure. In some cases, friction on the heterostructure is lower than that on the MoS2 monolayer. Quasi-static MD simulations and DFT calculations show that the origin of the friction contrast is the difference in energy barriers for a tip sliding across each of the three surfaces.</description><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kLFOwzAQhi0EEqXwBgweGZrWZ8dpPKKKtkiFDoU5cpwrpAQ72I54fRK1dLrTp1-_7j5C7oFNgXGYaROmVlvXYIxTVTLOhLwgI5CCJZlS_PK85-k1uQnhwBhTQrIR-dr6-qO21O3pa98QjG6QLn1tYu0sXTgbvQ6Rlhh_ES3ddW3rfMSKrrxuP9HihL64HZ9QbSuqz3Q2QLrGiN6F6DsTO4-35Gqvm4B3pzkm78unt8U62WxXz4vHTaJFCjExEuR-nufzVClgoJXKS6h4CbpiGas4iDxVmVAcpUmhwlJVYng5LzOjZJmKMXk49rbe_XQYYvFdB4NNoy26LhScS8gUpDDvo-wY7RUWB9d52x9WACsGr8UA_70WJ6_iDy3wbnE</recordid><startdate>20190814</startdate><enddate>20190814</enddate><creator>Vazirisereshk, Mohammad R</creator><creator>Ye, Han</creator><creator>Ye, Zhijiang</creator><creator>Otero-de-la-Roza, Alberto</creator><creator>Zhao, Meng-Qiang</creator><creator>Gao, Zhaoli</creator><creator>Johnson, A. T. Charlie</creator><creator>Johnson, Erin R</creator><creator>Carpick, Robert W</creator><creator>Martini, Ashlie</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5651-468X</orcidid><orcidid>https://orcid.org/0000-0001-8122-7749</orcidid><orcidid>https://orcid.org/0000-0002-0547-3144</orcidid><orcidid>https://orcid.org/0000-0002-3235-3156</orcidid><orcidid>https://orcid.org/0000-0003-3114-2207</orcidid><orcidid>https://orcid.org/0000-0003-2017-6081</orcidid><orcidid>https://orcid.org/0000-0002-5402-1224</orcidid></search><sort><creationdate>20190814</creationdate><title>Origin of Nanoscale Friction Contrast between Supported Graphene, MoS2, and a Graphene/MoS2 Heterostructure</title><author>Vazirisereshk, Mohammad R ; Ye, Han ; Ye, Zhijiang ; Otero-de-la-Roza, Alberto ; Zhao, Meng-Qiang ; Gao, Zhaoli ; Johnson, A. T. Charlie ; Johnson, Erin R ; Carpick, Robert W ; Martini, Ashlie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a341t-c515f7887499101a998b1d2b1ad060d2138496392e5c41deb9d302038b6c95b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vazirisereshk, Mohammad R</creatorcontrib><creatorcontrib>Ye, Han</creatorcontrib><creatorcontrib>Ye, Zhijiang</creatorcontrib><creatorcontrib>Otero-de-la-Roza, Alberto</creatorcontrib><creatorcontrib>Zhao, Meng-Qiang</creatorcontrib><creatorcontrib>Gao, Zhaoli</creatorcontrib><creatorcontrib>Johnson, A. T. Charlie</creatorcontrib><creatorcontrib>Johnson, Erin R</creatorcontrib><creatorcontrib>Carpick, Robert W</creatorcontrib><creatorcontrib>Martini, Ashlie</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vazirisereshk, Mohammad R</au><au>Ye, Han</au><au>Ye, Zhijiang</au><au>Otero-de-la-Roza, Alberto</au><au>Zhao, Meng-Qiang</au><au>Gao, Zhaoli</au><au>Johnson, A. T. Charlie</au><au>Johnson, Erin R</au><au>Carpick, Robert W</au><au>Martini, Ashlie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Origin of Nanoscale Friction Contrast between Supported Graphene, MoS2, and a Graphene/MoS2 Heterostructure</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2019-08-14</date><risdate>2019</risdate><volume>19</volume><issue>8</issue><spage>5496</spage><epage>5505</epage><pages>5496-5505</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Ultralow friction can be achieved with 2D materials, particularly graphene and MoS2. The nanotribological properties of these different 2D materials have been measured in previous atomic force microscope (AFM) experiments sequentially, precluding immediate and direct comparison of their frictional behavior. Here, friction is characterized at the nanoscale using AFM experiments with the same tip sliding over graphene, MoS2, and a graphene/MoS2 heterostructure in a single measurement, repeated hundreds of times, and also measured with a slowly varying normal force. The same material systems are simulated using molecular dynamics (MD) and analyzed using density functional theory (DFT) calculations. In both experiments and MD simulations, graphene consistently exhibits lower friction than the MoS2 monolayer and the heterostructure. In some cases, friction on the heterostructure is lower than that on the MoS2 monolayer. Quasi-static MD simulations and DFT calculations show that the origin of the friction contrast is the difference in energy barriers for a tip sliding across each of the three surfaces.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.nanolett.9b02035</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5651-468X</orcidid><orcidid>https://orcid.org/0000-0001-8122-7749</orcidid><orcidid>https://orcid.org/0000-0002-0547-3144</orcidid><orcidid>https://orcid.org/0000-0002-3235-3156</orcidid><orcidid>https://orcid.org/0000-0003-3114-2207</orcidid><orcidid>https://orcid.org/0000-0003-2017-6081</orcidid><orcidid>https://orcid.org/0000-0002-5402-1224</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2019-08, Vol.19 (8), p.5496-5505
issn 1530-6984
1530-6992
language eng
recordid cdi_proquest_miscellaneous_2251691417
source ACS Publications
title Origin of Nanoscale Friction Contrast between Supported Graphene, MoS2, and a Graphene/MoS2 Heterostructure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T09%3A51%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Origin%20of%20Nanoscale%20Friction%20Contrast%20between%20Supported%20Graphene,%20MoS2,%20and%20a%20Graphene/MoS2%20Heterostructure&rft.jtitle=Nano%20letters&rft.au=Vazirisereshk,%20Mohammad%20R&rft.date=2019-08-14&rft.volume=19&rft.issue=8&rft.spage=5496&rft.epage=5505&rft.pages=5496-5505&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.9b02035&rft_dat=%3Cproquest_acs_j%3E2251691417%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2251691417&rft_id=info:pmid/&rfr_iscdi=true