Origin of Nanoscale Friction Contrast between Supported Graphene, MoS2, and a Graphene/MoS2 Heterostructure
Ultralow friction can be achieved with 2D materials, particularly graphene and MoS2. The nanotribological properties of these different 2D materials have been measured in previous atomic force microscope (AFM) experiments sequentially, precluding immediate and direct comparison of their frictional b...
Gespeichert in:
Veröffentlicht in: | Nano letters 2019-08, Vol.19 (8), p.5496-5505 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5505 |
---|---|
container_issue | 8 |
container_start_page | 5496 |
container_title | Nano letters |
container_volume | 19 |
creator | Vazirisereshk, Mohammad R Ye, Han Ye, Zhijiang Otero-de-la-Roza, Alberto Zhao, Meng-Qiang Gao, Zhaoli Johnson, A. T. Charlie Johnson, Erin R Carpick, Robert W Martini, Ashlie |
description | Ultralow friction can be achieved with 2D materials, particularly graphene and MoS2. The nanotribological properties of these different 2D materials have been measured in previous atomic force microscope (AFM) experiments sequentially, precluding immediate and direct comparison of their frictional behavior. Here, friction is characterized at the nanoscale using AFM experiments with the same tip sliding over graphene, MoS2, and a graphene/MoS2 heterostructure in a single measurement, repeated hundreds of times, and also measured with a slowly varying normal force. The same material systems are simulated using molecular dynamics (MD) and analyzed using density functional theory (DFT) calculations. In both experiments and MD simulations, graphene consistently exhibits lower friction than the MoS2 monolayer and the heterostructure. In some cases, friction on the heterostructure is lower than that on the MoS2 monolayer. Quasi-static MD simulations and DFT calculations show that the origin of the friction contrast is the difference in energy barriers for a tip sliding across each of the three surfaces. |
doi_str_mv | 10.1021/acs.nanolett.9b02035 |
format | Article |
fullrecord | <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2251691417</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2251691417</sourcerecordid><originalsourceid>FETCH-LOGICAL-a341t-c515f7887499101a998b1d2b1ad060d2138496392e5c41deb9d302038b6c95b43</originalsourceid><addsrcrecordid>eNo9kLFOwzAQhi0EEqXwBgweGZrWZ8dpPKKKtkiFDoU5cpwrpAQ72I54fRK1dLrTp1-_7j5C7oFNgXGYaROmVlvXYIxTVTLOhLwgI5CCJZlS_PK85-k1uQnhwBhTQrIR-dr6-qO21O3pa98QjG6QLn1tYu0sXTgbvQ6Rlhh_ES3ddW3rfMSKrrxuP9HihL64HZ9QbSuqz3Q2QLrGiN6F6DsTO4-35Gqvm4B3pzkm78unt8U62WxXz4vHTaJFCjExEuR-nufzVClgoJXKS6h4CbpiGas4iDxVmVAcpUmhwlJVYng5LzOjZJmKMXk49rbe_XQYYvFdB4NNoy26LhScS8gUpDDvo-wY7RUWB9d52x9WACsGr8UA_70WJ6_iDy3wbnE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2251691417</pqid></control><display><type>article</type><title>Origin of Nanoscale Friction Contrast between Supported Graphene, MoS2, and a Graphene/MoS2 Heterostructure</title><source>ACS Publications</source><creator>Vazirisereshk, Mohammad R ; Ye, Han ; Ye, Zhijiang ; Otero-de-la-Roza, Alberto ; Zhao, Meng-Qiang ; Gao, Zhaoli ; Johnson, A. T. Charlie ; Johnson, Erin R ; Carpick, Robert W ; Martini, Ashlie</creator><creatorcontrib>Vazirisereshk, Mohammad R ; Ye, Han ; Ye, Zhijiang ; Otero-de-la-Roza, Alberto ; Zhao, Meng-Qiang ; Gao, Zhaoli ; Johnson, A. T. Charlie ; Johnson, Erin R ; Carpick, Robert W ; Martini, Ashlie</creatorcontrib><description>Ultralow friction can be achieved with 2D materials, particularly graphene and MoS2. The nanotribological properties of these different 2D materials have been measured in previous atomic force microscope (AFM) experiments sequentially, precluding immediate and direct comparison of their frictional behavior. Here, friction is characterized at the nanoscale using AFM experiments with the same tip sliding over graphene, MoS2, and a graphene/MoS2 heterostructure in a single measurement, repeated hundreds of times, and also measured with a slowly varying normal force. The same material systems are simulated using molecular dynamics (MD) and analyzed using density functional theory (DFT) calculations. In both experiments and MD simulations, graphene consistently exhibits lower friction than the MoS2 monolayer and the heterostructure. In some cases, friction on the heterostructure is lower than that on the MoS2 monolayer. Quasi-static MD simulations and DFT calculations show that the origin of the friction contrast is the difference in energy barriers for a tip sliding across each of the three surfaces.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.9b02035</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Nano letters, 2019-08, Vol.19 (8), p.5496-5505</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-5651-468X ; 0000-0001-8122-7749 ; 0000-0002-0547-3144 ; 0000-0002-3235-3156 ; 0000-0003-3114-2207 ; 0000-0003-2017-6081 ; 0000-0002-5402-1224</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.9b02035$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.nanolett.9b02035$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Vazirisereshk, Mohammad R</creatorcontrib><creatorcontrib>Ye, Han</creatorcontrib><creatorcontrib>Ye, Zhijiang</creatorcontrib><creatorcontrib>Otero-de-la-Roza, Alberto</creatorcontrib><creatorcontrib>Zhao, Meng-Qiang</creatorcontrib><creatorcontrib>Gao, Zhaoli</creatorcontrib><creatorcontrib>Johnson, A. T. Charlie</creatorcontrib><creatorcontrib>Johnson, Erin R</creatorcontrib><creatorcontrib>Carpick, Robert W</creatorcontrib><creatorcontrib>Martini, Ashlie</creatorcontrib><title>Origin of Nanoscale Friction Contrast between Supported Graphene, MoS2, and a Graphene/MoS2 Heterostructure</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Ultralow friction can be achieved with 2D materials, particularly graphene and MoS2. The nanotribological properties of these different 2D materials have been measured in previous atomic force microscope (AFM) experiments sequentially, precluding immediate and direct comparison of their frictional behavior. Here, friction is characterized at the nanoscale using AFM experiments with the same tip sliding over graphene, MoS2, and a graphene/MoS2 heterostructure in a single measurement, repeated hundreds of times, and also measured with a slowly varying normal force. The same material systems are simulated using molecular dynamics (MD) and analyzed using density functional theory (DFT) calculations. In both experiments and MD simulations, graphene consistently exhibits lower friction than the MoS2 monolayer and the heterostructure. In some cases, friction on the heterostructure is lower than that on the MoS2 monolayer. Quasi-static MD simulations and DFT calculations show that the origin of the friction contrast is the difference in energy barriers for a tip sliding across each of the three surfaces.</description><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kLFOwzAQhi0EEqXwBgweGZrWZ8dpPKKKtkiFDoU5cpwrpAQ72I54fRK1dLrTp1-_7j5C7oFNgXGYaROmVlvXYIxTVTLOhLwgI5CCJZlS_PK85-k1uQnhwBhTQrIR-dr6-qO21O3pa98QjG6QLn1tYu0sXTgbvQ6Rlhh_ES3ddW3rfMSKrrxuP9HihL64HZ9QbSuqz3Q2QLrGiN6F6DsTO4-35Gqvm4B3pzkm78unt8U62WxXz4vHTaJFCjExEuR-nufzVClgoJXKS6h4CbpiGas4iDxVmVAcpUmhwlJVYng5LzOjZJmKMXk49rbe_XQYYvFdB4NNoy26LhScS8gUpDDvo-wY7RUWB9d52x9WACsGr8UA_70WJ6_iDy3wbnE</recordid><startdate>20190814</startdate><enddate>20190814</enddate><creator>Vazirisereshk, Mohammad R</creator><creator>Ye, Han</creator><creator>Ye, Zhijiang</creator><creator>Otero-de-la-Roza, Alberto</creator><creator>Zhao, Meng-Qiang</creator><creator>Gao, Zhaoli</creator><creator>Johnson, A. T. Charlie</creator><creator>Johnson, Erin R</creator><creator>Carpick, Robert W</creator><creator>Martini, Ashlie</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5651-468X</orcidid><orcidid>https://orcid.org/0000-0001-8122-7749</orcidid><orcidid>https://orcid.org/0000-0002-0547-3144</orcidid><orcidid>https://orcid.org/0000-0002-3235-3156</orcidid><orcidid>https://orcid.org/0000-0003-3114-2207</orcidid><orcidid>https://orcid.org/0000-0003-2017-6081</orcidid><orcidid>https://orcid.org/0000-0002-5402-1224</orcidid></search><sort><creationdate>20190814</creationdate><title>Origin of Nanoscale Friction Contrast between Supported Graphene, MoS2, and a Graphene/MoS2 Heterostructure</title><author>Vazirisereshk, Mohammad R ; Ye, Han ; Ye, Zhijiang ; Otero-de-la-Roza, Alberto ; Zhao, Meng-Qiang ; Gao, Zhaoli ; Johnson, A. T. Charlie ; Johnson, Erin R ; Carpick, Robert W ; Martini, Ashlie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a341t-c515f7887499101a998b1d2b1ad060d2138496392e5c41deb9d302038b6c95b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vazirisereshk, Mohammad R</creatorcontrib><creatorcontrib>Ye, Han</creatorcontrib><creatorcontrib>Ye, Zhijiang</creatorcontrib><creatorcontrib>Otero-de-la-Roza, Alberto</creatorcontrib><creatorcontrib>Zhao, Meng-Qiang</creatorcontrib><creatorcontrib>Gao, Zhaoli</creatorcontrib><creatorcontrib>Johnson, A. T. Charlie</creatorcontrib><creatorcontrib>Johnson, Erin R</creatorcontrib><creatorcontrib>Carpick, Robert W</creatorcontrib><creatorcontrib>Martini, Ashlie</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vazirisereshk, Mohammad R</au><au>Ye, Han</au><au>Ye, Zhijiang</au><au>Otero-de-la-Roza, Alberto</au><au>Zhao, Meng-Qiang</au><au>Gao, Zhaoli</au><au>Johnson, A. T. Charlie</au><au>Johnson, Erin R</au><au>Carpick, Robert W</au><au>Martini, Ashlie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Origin of Nanoscale Friction Contrast between Supported Graphene, MoS2, and a Graphene/MoS2 Heterostructure</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2019-08-14</date><risdate>2019</risdate><volume>19</volume><issue>8</issue><spage>5496</spage><epage>5505</epage><pages>5496-5505</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Ultralow friction can be achieved with 2D materials, particularly graphene and MoS2. The nanotribological properties of these different 2D materials have been measured in previous atomic force microscope (AFM) experiments sequentially, precluding immediate and direct comparison of their frictional behavior. Here, friction is characterized at the nanoscale using AFM experiments with the same tip sliding over graphene, MoS2, and a graphene/MoS2 heterostructure in a single measurement, repeated hundreds of times, and also measured with a slowly varying normal force. The same material systems are simulated using molecular dynamics (MD) and analyzed using density functional theory (DFT) calculations. In both experiments and MD simulations, graphene consistently exhibits lower friction than the MoS2 monolayer and the heterostructure. In some cases, friction on the heterostructure is lower than that on the MoS2 monolayer. Quasi-static MD simulations and DFT calculations show that the origin of the friction contrast is the difference in energy barriers for a tip sliding across each of the three surfaces.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.nanolett.9b02035</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5651-468X</orcidid><orcidid>https://orcid.org/0000-0001-8122-7749</orcidid><orcidid>https://orcid.org/0000-0002-0547-3144</orcidid><orcidid>https://orcid.org/0000-0002-3235-3156</orcidid><orcidid>https://orcid.org/0000-0003-3114-2207</orcidid><orcidid>https://orcid.org/0000-0003-2017-6081</orcidid><orcidid>https://orcid.org/0000-0002-5402-1224</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-6984 |
ispartof | Nano letters, 2019-08, Vol.19 (8), p.5496-5505 |
issn | 1530-6984 1530-6992 |
language | eng |
recordid | cdi_proquest_miscellaneous_2251691417 |
source | ACS Publications |
title | Origin of Nanoscale Friction Contrast between Supported Graphene, MoS2, and a Graphene/MoS2 Heterostructure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T09%3A51%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Origin%20of%20Nanoscale%20Friction%20Contrast%20between%20Supported%20Graphene,%20MoS2,%20and%20a%20Graphene/MoS2%20Heterostructure&rft.jtitle=Nano%20letters&rft.au=Vazirisereshk,%20Mohammad%20R&rft.date=2019-08-14&rft.volume=19&rft.issue=8&rft.spage=5496&rft.epage=5505&rft.pages=5496-5505&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.9b02035&rft_dat=%3Cproquest_acs_j%3E2251691417%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2251691417&rft_id=info:pmid/&rfr_iscdi=true |