Recyclable and superior selective CO2 adsorption of C4B32 and Ca@C4B32: a new category of perfect cubic heteroborospherenes
The capture and separation of CO2 have attracted significant interest as a strategy to control the global emission of greenhouse gases. From the perspective of environmental protection, it is crucial to explore high-performance adsorbents that can efficiently capture CO2. Herein, we report a density...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2019, Vol.21 (28), p.15541-15550 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15550 |
---|---|
container_issue | 28 |
container_start_page | 15541 |
container_title | Physical chemistry chemical physics : PCCP |
container_volume | 21 |
creator | Bai, Hui Ma, Mengmeng Zuo, Jianping Qian-Fan, Zhang Bai, Bing Cao, Haojie Huang, Wei |
description | The capture and separation of CO2 have attracted significant interest as a strategy to control the global emission of greenhouse gases. From the perspective of environmental protection, it is crucial to explore high-performance adsorbents that can efficiently capture CO2. Herein, we report a density functional theory study on the viability of the heteroborospherene C4B32 for the first time. C2v C4B32 was revealed to be a perfect cubic heteroborospherene with the HOMO–LUMO gap of 3.47 eV at the PBE0 level. Then, we evaluated the potential application of C4B32 in the capture and separation of CO2. Our results indicate that the cubic-like C4B32 can efficiently capture CO2 with a −1.34 eV adsorption energy via chemisorption at the most acidic and basic sites of the cage. The strong interaction between CO2 and C4B32 could be supported by an effective charge transfer and orbital overlap. C4B32 also displayed high selectivity for the separation of CO2 from NH3, N2, CH4, CO, and H2 mixtures. Furthermore, it was feasible to tune the CO2-capture ability of C4B32 by metal-doping, which regulated the Lewis acidity/basicity of the C4B32 surface. In particular, Ca-doping could significantly enhance the CO2-capture ability of C4B32. Our results show that as a highly symmetrical and stable heteroborospherene, C4B32 can be used as a building block for the design and synthesis of novel nanomaterials for the capture and separation of CO2. |
doi_str_mv | 10.1039/c9cp02380a |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_2251111068</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2251111068</sourcerecordid><originalsourceid>FETCH-LOGICAL-g253t-b9dc1b2f3f867b5739ada8c1ea72867e696e065aa58066875c0e0f94f6baf14e3</originalsourceid><addsrcrecordid>eNpdjk1LxDAQhoMouK5e_AUBL16q-WjTxJNa_IKFBdHzMk0nu11qU5NWWfzzdlfx4Fzed4aHhyHklLMLzqS5tMZ2TEjNYI9MeKpkYphO9_96rg7JUYxrxhjPuJyQr2e0G9tA2SCFtqJx6DDUPtCIDdq-_kBazAWFKvrQ9bVvqXe0SG-l2OEFXO-WKwq0xU9qocelD5stNYrcqKB2KGtLV9hj8KUPPnYrDNhiPCYHDpqIJ785Ja_3dy_FYzKbPzwVN7NkKTLZJ6WpLC-Fk06rvMxyaaACbTlCLsYLKqOQqQwg00wpnWeWIXMmdaoEx1OUU3L-4-2Cfx8w9ou3OlpsGmjRD3EhRMbHYUqP6Nk_dO2H0I7fbSmtTMqMlt-j8Wxq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2258694098</pqid></control><display><type>article</type><title>Recyclable and superior selective CO2 adsorption of C4B32 and Ca@C4B32: a new category of perfect cubic heteroborospherenes</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Bai, Hui ; Ma, Mengmeng ; Zuo, Jianping ; Qian-Fan, Zhang ; Bai, Bing ; Cao, Haojie ; Huang, Wei</creator><creatorcontrib>Bai, Hui ; Ma, Mengmeng ; Zuo, Jianping ; Qian-Fan, Zhang ; Bai, Bing ; Cao, Haojie ; Huang, Wei</creatorcontrib><description>The capture and separation of CO2 have attracted significant interest as a strategy to control the global emission of greenhouse gases. From the perspective of environmental protection, it is crucial to explore high-performance adsorbents that can efficiently capture CO2. Herein, we report a density functional theory study on the viability of the heteroborospherene C4B32 for the first time. C2v C4B32 was revealed to be a perfect cubic heteroborospherene with the HOMO–LUMO gap of 3.47 eV at the PBE0 level. Then, we evaluated the potential application of C4B32 in the capture and separation of CO2. Our results indicate that the cubic-like C4B32 can efficiently capture CO2 with a −1.34 eV adsorption energy via chemisorption at the most acidic and basic sites of the cage. The strong interaction between CO2 and C4B32 could be supported by an effective charge transfer and orbital overlap. C4B32 also displayed high selectivity for the separation of CO2 from NH3, N2, CH4, CO, and H2 mixtures. Furthermore, it was feasible to tune the CO2-capture ability of C4B32 by metal-doping, which regulated the Lewis acidity/basicity of the C4B32 surface. In particular, Ca-doping could significantly enhance the CO2-capture ability of C4B32. Our results show that as a highly symmetrical and stable heteroborospherene, C4B32 can be used as a building block for the design and synthesis of novel nanomaterials for the capture and separation of CO2.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c9cp02380a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Adsorption ; Ammonia ; Basicity ; Carbon dioxide ; Carbon sequestration ; Charge transfer ; Chemisorption ; Density functional theory ; Doping ; Emissions control ; Environmental protection ; Greenhouse effect ; Greenhouse gases ; Molecular orbitals ; Nanomaterials ; Organic chemistry ; Selectivity ; Separation ; Strong interactions (field theory) ; Viability</subject><ispartof>Physical chemistry chemical physics : PCCP, 2019, Vol.21 (28), p.15541-15550</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Bai, Hui</creatorcontrib><creatorcontrib>Ma, Mengmeng</creatorcontrib><creatorcontrib>Zuo, Jianping</creatorcontrib><creatorcontrib>Qian-Fan, Zhang</creatorcontrib><creatorcontrib>Bai, Bing</creatorcontrib><creatorcontrib>Cao, Haojie</creatorcontrib><creatorcontrib>Huang, Wei</creatorcontrib><title>Recyclable and superior selective CO2 adsorption of C4B32 and Ca@C4B32: a new category of perfect cubic heteroborospherenes</title><title>Physical chemistry chemical physics : PCCP</title><description>The capture and separation of CO2 have attracted significant interest as a strategy to control the global emission of greenhouse gases. From the perspective of environmental protection, it is crucial to explore high-performance adsorbents that can efficiently capture CO2. Herein, we report a density functional theory study on the viability of the heteroborospherene C4B32 for the first time. C2v C4B32 was revealed to be a perfect cubic heteroborospherene with the HOMO–LUMO gap of 3.47 eV at the PBE0 level. Then, we evaluated the potential application of C4B32 in the capture and separation of CO2. Our results indicate that the cubic-like C4B32 can efficiently capture CO2 with a −1.34 eV adsorption energy via chemisorption at the most acidic and basic sites of the cage. The strong interaction between CO2 and C4B32 could be supported by an effective charge transfer and orbital overlap. C4B32 also displayed high selectivity for the separation of CO2 from NH3, N2, CH4, CO, and H2 mixtures. Furthermore, it was feasible to tune the CO2-capture ability of C4B32 by metal-doping, which regulated the Lewis acidity/basicity of the C4B32 surface. In particular, Ca-doping could significantly enhance the CO2-capture ability of C4B32. Our results show that as a highly symmetrical and stable heteroborospherene, C4B32 can be used as a building block for the design and synthesis of novel nanomaterials for the capture and separation of CO2.</description><subject>Adsorption</subject><subject>Ammonia</subject><subject>Basicity</subject><subject>Carbon dioxide</subject><subject>Carbon sequestration</subject><subject>Charge transfer</subject><subject>Chemisorption</subject><subject>Density functional theory</subject><subject>Doping</subject><subject>Emissions control</subject><subject>Environmental protection</subject><subject>Greenhouse effect</subject><subject>Greenhouse gases</subject><subject>Molecular orbitals</subject><subject>Nanomaterials</subject><subject>Organic chemistry</subject><subject>Selectivity</subject><subject>Separation</subject><subject>Strong interactions (field theory)</subject><subject>Viability</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdjk1LxDAQhoMouK5e_AUBL16q-WjTxJNa_IKFBdHzMk0nu11qU5NWWfzzdlfx4Fzed4aHhyHklLMLzqS5tMZ2TEjNYI9MeKpkYphO9_96rg7JUYxrxhjPuJyQr2e0G9tA2SCFtqJx6DDUPtCIDdq-_kBazAWFKvrQ9bVvqXe0SG-l2OEFXO-WKwq0xU9qocelD5stNYrcqKB2KGtLV9hj8KUPPnYrDNhiPCYHDpqIJ785Ja_3dy_FYzKbPzwVN7NkKTLZJ6WpLC-Fk06rvMxyaaACbTlCLsYLKqOQqQwg00wpnWeWIXMmdaoEx1OUU3L-4-2Cfx8w9ou3OlpsGmjRD3EhRMbHYUqP6Nk_dO2H0I7fbSmtTMqMlt-j8Wxq</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Bai, Hui</creator><creator>Ma, Mengmeng</creator><creator>Zuo, Jianping</creator><creator>Qian-Fan, Zhang</creator><creator>Bai, Bing</creator><creator>Cao, Haojie</creator><creator>Huang, Wei</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>2019</creationdate><title>Recyclable and superior selective CO2 adsorption of C4B32 and Ca@C4B32: a new category of perfect cubic heteroborospherenes</title><author>Bai, Hui ; Ma, Mengmeng ; Zuo, Jianping ; Qian-Fan, Zhang ; Bai, Bing ; Cao, Haojie ; Huang, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g253t-b9dc1b2f3f867b5739ada8c1ea72867e696e065aa58066875c0e0f94f6baf14e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adsorption</topic><topic>Ammonia</topic><topic>Basicity</topic><topic>Carbon dioxide</topic><topic>Carbon sequestration</topic><topic>Charge transfer</topic><topic>Chemisorption</topic><topic>Density functional theory</topic><topic>Doping</topic><topic>Emissions control</topic><topic>Environmental protection</topic><topic>Greenhouse effect</topic><topic>Greenhouse gases</topic><topic>Molecular orbitals</topic><topic>Nanomaterials</topic><topic>Organic chemistry</topic><topic>Selectivity</topic><topic>Separation</topic><topic>Strong interactions (field theory)</topic><topic>Viability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bai, Hui</creatorcontrib><creatorcontrib>Ma, Mengmeng</creatorcontrib><creatorcontrib>Zuo, Jianping</creatorcontrib><creatorcontrib>Qian-Fan, Zhang</creatorcontrib><creatorcontrib>Bai, Bing</creatorcontrib><creatorcontrib>Cao, Haojie</creatorcontrib><creatorcontrib>Huang, Wei</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bai, Hui</au><au>Ma, Mengmeng</au><au>Zuo, Jianping</au><au>Qian-Fan, Zhang</au><au>Bai, Bing</au><au>Cao, Haojie</au><au>Huang, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recyclable and superior selective CO2 adsorption of C4B32 and Ca@C4B32: a new category of perfect cubic heteroborospherenes</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><date>2019</date><risdate>2019</risdate><volume>21</volume><issue>28</issue><spage>15541</spage><epage>15550</epage><pages>15541-15550</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>The capture and separation of CO2 have attracted significant interest as a strategy to control the global emission of greenhouse gases. From the perspective of environmental protection, it is crucial to explore high-performance adsorbents that can efficiently capture CO2. Herein, we report a density functional theory study on the viability of the heteroborospherene C4B32 for the first time. C2v C4B32 was revealed to be a perfect cubic heteroborospherene with the HOMO–LUMO gap of 3.47 eV at the PBE0 level. Then, we evaluated the potential application of C4B32 in the capture and separation of CO2. Our results indicate that the cubic-like C4B32 can efficiently capture CO2 with a −1.34 eV adsorption energy via chemisorption at the most acidic and basic sites of the cage. The strong interaction between CO2 and C4B32 could be supported by an effective charge transfer and orbital overlap. C4B32 also displayed high selectivity for the separation of CO2 from NH3, N2, CH4, CO, and H2 mixtures. Furthermore, it was feasible to tune the CO2-capture ability of C4B32 by metal-doping, which regulated the Lewis acidity/basicity of the C4B32 surface. In particular, Ca-doping could significantly enhance the CO2-capture ability of C4B32. Our results show that as a highly symmetrical and stable heteroborospherene, C4B32 can be used as a building block for the design and synthesis of novel nanomaterials for the capture and separation of CO2.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c9cp02380a</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9076 |
ispartof | Physical chemistry chemical physics : PCCP, 2019, Vol.21 (28), p.15541-15550 |
issn | 1463-9076 1463-9084 |
language | eng |
recordid | cdi_proquest_miscellaneous_2251111068 |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Adsorption Ammonia Basicity Carbon dioxide Carbon sequestration Charge transfer Chemisorption Density functional theory Doping Emissions control Environmental protection Greenhouse effect Greenhouse gases Molecular orbitals Nanomaterials Organic chemistry Selectivity Separation Strong interactions (field theory) Viability |
title | Recyclable and superior selective CO2 adsorption of C4B32 and Ca@C4B32: a new category of perfect cubic heteroborospherenes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T20%3A26%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recyclable%20and%20superior%20selective%20CO2%20adsorption%20of%20C4B32%20and%20Ca@C4B32:%20a%20new%20category%20of%20perfect%20cubic%20heteroborospherenes&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Bai,%20Hui&rft.date=2019&rft.volume=21&rft.issue=28&rft.spage=15541&rft.epage=15550&rft.pages=15541-15550&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c9cp02380a&rft_dat=%3Cproquest%3E2251111068%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2258694098&rft_id=info:pmid/&rfr_iscdi=true |