Multimode waveguide crossing based on a square Maxwell's fisheye lens

Mode-division multiplexing (MDM) is an emerging large-capacity data communication technology utilizing orthogonal guiding modes as independent data streams. One of the challenges of multimode waveguide routing in MDM systems is decreasing the mode leakage of waveguide crossings. In this article, a s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied optics (2004) 2019-06, Vol.58 (17), p.4647-4653
Hauptverfasser: Badri, S Hadi, Rasooli Saghai, H, Soofi, Hadi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4653
container_issue 17
container_start_page 4647
container_title Applied optics (2004)
container_volume 58
creator Badri, S Hadi
Rasooli Saghai, H
Soofi, Hadi
description Mode-division multiplexing (MDM) is an emerging large-capacity data communication technology utilizing orthogonal guiding modes as independent data streams. One of the challenges of multimode waveguide routing in MDM systems is decreasing the mode leakage of waveguide crossings. In this article, a square Maxwell's fish-eye lens as a waveguide crossing medium based on quasiconformal transformation optics is designed and implemented on a silicon-on-insulator platform. Two approaches were taken to realize the designed lens: graded photonic crystal and varying the thickness of the silicon slab waveguide. Three-dimensional numerical simulations show that the designed multimode waveguide crossing has an ultrawide bandwidth from 1260 to 1675 nm with a compact footprint of only 3.77×3.77  μm . For the first three transverse electric modes (TE0, TE1, and TE2), the designed waveguide crossing exhibits an average insertion loss of 0.24, 0.55, and 0.45 dB; a crosstalk of less than -72, -61, and -27  dB; and a maximum return loss of 54, 53, and 30 dB, respectively. The designed waveguide crossing supports low-distortion pulse transmission with a high fidelity factor of 0.9857. Furthermore, the proposed method can be expanded to design waveguide crossings with an even higher number of supporting modes by increasing the size of the lens.
doi_str_mv 10.1364/AO.58.004647
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2250638240</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2248404213</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-a098a8b71df8832fd9be7a147446111ef4d275670b26864ff5ea731c6ca1284d3</originalsourceid><addsrcrecordid>eNpdkEtPwkAUhSdGI4juXJtJXOjC4rxnuiQEHwmEjSbumml7B0v6wA4V-fcOgi5c3ZObLyfnHIQuKRlSrsT9aD6UZkiIUEIfoT6jUkacKnmM-kHGEWXmrYfOvF8SwqWI9Snqccpk-Is-msy6cl1UTQ54Yz9h0RVBZW3jfVEvcGo95LipscX-o7Mt4Jn92kBZ3njsCv8OW8Al1P4cnThberg43AF6fZi8jJ-i6fzxeTyaRhmXeh1ZEhtrUk1zZwxnLo9T0JYKLYSilIITOdNSaZIyZZRwToLVnGYqs7u0OR-g273vqm0-OvDrpCp8FvLYGprOJ4xJorhhggT0-h-6bLq2DukCJYwgglEeqLs99VO5BZes2qKy7TahJNnNm4zmiTTJft6AXx1Mu7SC_A_-3ZN_A3z1cyo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2248404213</pqid></control><display><type>article</type><title>Multimode waveguide crossing based on a square Maxwell's fisheye lens</title><source>Alma/SFX Local Collection</source><source>Optica Publishing Group Journals</source><creator>Badri, S Hadi ; Rasooli Saghai, H ; Soofi, Hadi</creator><creatorcontrib>Badri, S Hadi ; Rasooli Saghai, H ; Soofi, Hadi</creatorcontrib><description>Mode-division multiplexing (MDM) is an emerging large-capacity data communication technology utilizing orthogonal guiding modes as independent data streams. One of the challenges of multimode waveguide routing in MDM systems is decreasing the mode leakage of waveguide crossings. In this article, a square Maxwell's fish-eye lens as a waveguide crossing medium based on quasiconformal transformation optics is designed and implemented on a silicon-on-insulator platform. Two approaches were taken to realize the designed lens: graded photonic crystal and varying the thickness of the silicon slab waveguide. Three-dimensional numerical simulations show that the designed multimode waveguide crossing has an ultrawide bandwidth from 1260 to 1675 nm with a compact footprint of only 3.77×3.77  μm . For the first three transverse electric modes (TE0, TE1, and TE2), the designed waveguide crossing exhibits an average insertion loss of 0.24, 0.55, and 0.45 dB; a crosstalk of less than -72, -61, and -27  dB; and a maximum return loss of 54, 53, and 30 dB, respectively. The designed waveguide crossing supports low-distortion pulse transmission with a high fidelity factor of 0.9857. Furthermore, the proposed method can be expanded to design waveguide crossings with an even higher number of supporting modes by increasing the size of the lens.</description><identifier>ISSN: 1559-128X</identifier><identifier>EISSN: 2155-3165</identifier><identifier>EISSN: 1539-4522</identifier><identifier>DOI: 10.1364/AO.58.004647</identifier><identifier>PMID: 31251284</identifier><language>eng</language><publisher>United States: Optical Society of America</publisher><subject>Bandwidths ; Computer simulation ; Crosstalk ; Data transmission ; Fisheye views ; Insertion loss ; Lenses ; Multiplexing ; Photonic crystals ; Silicon ; Transverse electric modes</subject><ispartof>Applied optics (2004), 2019-06, Vol.58 (17), p.4647-4653</ispartof><rights>Copyright Optical Society of America Jun 10, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-a098a8b71df8832fd9be7a147446111ef4d275670b26864ff5ea731c6ca1284d3</citedby><cites>FETCH-LOGICAL-c357t-a098a8b71df8832fd9be7a147446111ef4d275670b26864ff5ea731c6ca1284d3</cites><orcidid>0000-0001-9160-574X ; 0000-0003-2295-6276 ; 0000-0002-0284-3947</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3245,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31251284$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Badri, S Hadi</creatorcontrib><creatorcontrib>Rasooli Saghai, H</creatorcontrib><creatorcontrib>Soofi, Hadi</creatorcontrib><title>Multimode waveguide crossing based on a square Maxwell's fisheye lens</title><title>Applied optics (2004)</title><addtitle>Appl Opt</addtitle><description>Mode-division multiplexing (MDM) is an emerging large-capacity data communication technology utilizing orthogonal guiding modes as independent data streams. One of the challenges of multimode waveguide routing in MDM systems is decreasing the mode leakage of waveguide crossings. In this article, a square Maxwell's fish-eye lens as a waveguide crossing medium based on quasiconformal transformation optics is designed and implemented on a silicon-on-insulator platform. Two approaches were taken to realize the designed lens: graded photonic crystal and varying the thickness of the silicon slab waveguide. Three-dimensional numerical simulations show that the designed multimode waveguide crossing has an ultrawide bandwidth from 1260 to 1675 nm with a compact footprint of only 3.77×3.77  μm . For the first three transverse electric modes (TE0, TE1, and TE2), the designed waveguide crossing exhibits an average insertion loss of 0.24, 0.55, and 0.45 dB; a crosstalk of less than -72, -61, and -27  dB; and a maximum return loss of 54, 53, and 30 dB, respectively. The designed waveguide crossing supports low-distortion pulse transmission with a high fidelity factor of 0.9857. Furthermore, the proposed method can be expanded to design waveguide crossings with an even higher number of supporting modes by increasing the size of the lens.</description><subject>Bandwidths</subject><subject>Computer simulation</subject><subject>Crosstalk</subject><subject>Data transmission</subject><subject>Fisheye views</subject><subject>Insertion loss</subject><subject>Lenses</subject><subject>Multiplexing</subject><subject>Photonic crystals</subject><subject>Silicon</subject><subject>Transverse electric modes</subject><issn>1559-128X</issn><issn>2155-3165</issn><issn>1539-4522</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkEtPwkAUhSdGI4juXJtJXOjC4rxnuiQEHwmEjSbumml7B0v6wA4V-fcOgi5c3ZObLyfnHIQuKRlSrsT9aD6UZkiIUEIfoT6jUkacKnmM-kHGEWXmrYfOvF8SwqWI9Snqccpk-Is-msy6cl1UTQ54Yz9h0RVBZW3jfVEvcGo95LipscX-o7Mt4Jn92kBZ3njsCv8OW8Al1P4cnThberg43AF6fZi8jJ-i6fzxeTyaRhmXeh1ZEhtrUk1zZwxnLo9T0JYKLYSilIITOdNSaZIyZZRwToLVnGYqs7u0OR-g273vqm0-OvDrpCp8FvLYGprOJ4xJorhhggT0-h-6bLq2DukCJYwgglEeqLs99VO5BZes2qKy7TahJNnNm4zmiTTJft6AXx1Mu7SC_A_-3ZN_A3z1cyo</recordid><startdate>20190610</startdate><enddate>20190610</enddate><creator>Badri, S Hadi</creator><creator>Rasooli Saghai, H</creator><creator>Soofi, Hadi</creator><general>Optical Society of America</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9160-574X</orcidid><orcidid>https://orcid.org/0000-0003-2295-6276</orcidid><orcidid>https://orcid.org/0000-0002-0284-3947</orcidid></search><sort><creationdate>20190610</creationdate><title>Multimode waveguide crossing based on a square Maxwell's fisheye lens</title><author>Badri, S Hadi ; Rasooli Saghai, H ; Soofi, Hadi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-a098a8b71df8832fd9be7a147446111ef4d275670b26864ff5ea731c6ca1284d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bandwidths</topic><topic>Computer simulation</topic><topic>Crosstalk</topic><topic>Data transmission</topic><topic>Fisheye views</topic><topic>Insertion loss</topic><topic>Lenses</topic><topic>Multiplexing</topic><topic>Photonic crystals</topic><topic>Silicon</topic><topic>Transverse electric modes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Badri, S Hadi</creatorcontrib><creatorcontrib>Rasooli Saghai, H</creatorcontrib><creatorcontrib>Soofi, Hadi</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Applied optics (2004)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Badri, S Hadi</au><au>Rasooli Saghai, H</au><au>Soofi, Hadi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multimode waveguide crossing based on a square Maxwell's fisheye lens</atitle><jtitle>Applied optics (2004)</jtitle><addtitle>Appl Opt</addtitle><date>2019-06-10</date><risdate>2019</risdate><volume>58</volume><issue>17</issue><spage>4647</spage><epage>4653</epage><pages>4647-4653</pages><issn>1559-128X</issn><eissn>2155-3165</eissn><eissn>1539-4522</eissn><abstract>Mode-division multiplexing (MDM) is an emerging large-capacity data communication technology utilizing orthogonal guiding modes as independent data streams. One of the challenges of multimode waveguide routing in MDM systems is decreasing the mode leakage of waveguide crossings. In this article, a square Maxwell's fish-eye lens as a waveguide crossing medium based on quasiconformal transformation optics is designed and implemented on a silicon-on-insulator platform. Two approaches were taken to realize the designed lens: graded photonic crystal and varying the thickness of the silicon slab waveguide. Three-dimensional numerical simulations show that the designed multimode waveguide crossing has an ultrawide bandwidth from 1260 to 1675 nm with a compact footprint of only 3.77×3.77  μm . For the first three transverse electric modes (TE0, TE1, and TE2), the designed waveguide crossing exhibits an average insertion loss of 0.24, 0.55, and 0.45 dB; a crosstalk of less than -72, -61, and -27  dB; and a maximum return loss of 54, 53, and 30 dB, respectively. The designed waveguide crossing supports low-distortion pulse transmission with a high fidelity factor of 0.9857. Furthermore, the proposed method can be expanded to design waveguide crossings with an even higher number of supporting modes by increasing the size of the lens.</abstract><cop>United States</cop><pub>Optical Society of America</pub><pmid>31251284</pmid><doi>10.1364/AO.58.004647</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-9160-574X</orcidid><orcidid>https://orcid.org/0000-0003-2295-6276</orcidid><orcidid>https://orcid.org/0000-0002-0284-3947</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1559-128X
ispartof Applied optics (2004), 2019-06, Vol.58 (17), p.4647-4653
issn 1559-128X
2155-3165
1539-4522
language eng
recordid cdi_proquest_miscellaneous_2250638240
source Alma/SFX Local Collection; Optica Publishing Group Journals
subjects Bandwidths
Computer simulation
Crosstalk
Data transmission
Fisheye views
Insertion loss
Lenses
Multiplexing
Photonic crystals
Silicon
Transverse electric modes
title Multimode waveguide crossing based on a square Maxwell's fisheye lens
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T22%3A33%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multimode%20waveguide%20crossing%20based%20on%20a%20square%20Maxwell's%20fisheye%20lens&rft.jtitle=Applied%20optics%20(2004)&rft.au=Badri,%20S%20Hadi&rft.date=2019-06-10&rft.volume=58&rft.issue=17&rft.spage=4647&rft.epage=4653&rft.pages=4647-4653&rft.issn=1559-128X&rft.eissn=2155-3165&rft_id=info:doi/10.1364/AO.58.004647&rft_dat=%3Cproquest_cross%3E2248404213%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2248404213&rft_id=info:pmid/31251284&rfr_iscdi=true