Multimode waveguide crossing based on a square Maxwell's fisheye lens
Mode-division multiplexing (MDM) is an emerging large-capacity data communication technology utilizing orthogonal guiding modes as independent data streams. One of the challenges of multimode waveguide routing in MDM systems is decreasing the mode leakage of waveguide crossings. In this article, a s...
Gespeichert in:
Veröffentlicht in: | Applied optics (2004) 2019-06, Vol.58 (17), p.4647-4653 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4653 |
---|---|
container_issue | 17 |
container_start_page | 4647 |
container_title | Applied optics (2004) |
container_volume | 58 |
creator | Badri, S Hadi Rasooli Saghai, H Soofi, Hadi |
description | Mode-division multiplexing (MDM) is an emerging large-capacity data communication technology utilizing orthogonal guiding modes as independent data streams. One of the challenges of multimode waveguide routing in MDM systems is decreasing the mode leakage of waveguide crossings. In this article, a square Maxwell's fish-eye lens as a waveguide crossing medium based on quasiconformal transformation optics is designed and implemented on a silicon-on-insulator platform. Two approaches were taken to realize the designed lens: graded photonic crystal and varying the thickness of the silicon slab waveguide. Three-dimensional numerical simulations show that the designed multimode waveguide crossing has an ultrawide bandwidth from 1260 to 1675 nm with a compact footprint of only 3.77×3.77 μm
. For the first three transverse electric modes (TE0, TE1, and TE2), the designed waveguide crossing exhibits an average insertion loss of 0.24, 0.55, and 0.45 dB; a crosstalk of less than -72, -61, and -27 dB; and a maximum return loss of 54, 53, and 30 dB, respectively. The designed waveguide crossing supports low-distortion pulse transmission with a high fidelity factor of 0.9857. Furthermore, the proposed method can be expanded to design waveguide crossings with an even higher number of supporting modes by increasing the size of the lens. |
doi_str_mv | 10.1364/AO.58.004647 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2250638240</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2248404213</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-a098a8b71df8832fd9be7a147446111ef4d275670b26864ff5ea731c6ca1284d3</originalsourceid><addsrcrecordid>eNpdkEtPwkAUhSdGI4juXJtJXOjC4rxnuiQEHwmEjSbumml7B0v6wA4V-fcOgi5c3ZObLyfnHIQuKRlSrsT9aD6UZkiIUEIfoT6jUkacKnmM-kHGEWXmrYfOvF8SwqWI9Snqccpk-Is-msy6cl1UTQ54Yz9h0RVBZW3jfVEvcGo95LipscX-o7Mt4Jn92kBZ3njsCv8OW8Al1P4cnThberg43AF6fZi8jJ-i6fzxeTyaRhmXeh1ZEhtrUk1zZwxnLo9T0JYKLYSilIITOdNSaZIyZZRwToLVnGYqs7u0OR-g273vqm0-OvDrpCp8FvLYGprOJ4xJorhhggT0-h-6bLq2DukCJYwgglEeqLs99VO5BZes2qKy7TahJNnNm4zmiTTJft6AXx1Mu7SC_A_-3ZN_A3z1cyo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2248404213</pqid></control><display><type>article</type><title>Multimode waveguide crossing based on a square Maxwell's fisheye lens</title><source>Alma/SFX Local Collection</source><source>Optica Publishing Group Journals</source><creator>Badri, S Hadi ; Rasooli Saghai, H ; Soofi, Hadi</creator><creatorcontrib>Badri, S Hadi ; Rasooli Saghai, H ; Soofi, Hadi</creatorcontrib><description>Mode-division multiplexing (MDM) is an emerging large-capacity data communication technology utilizing orthogonal guiding modes as independent data streams. One of the challenges of multimode waveguide routing in MDM systems is decreasing the mode leakage of waveguide crossings. In this article, a square Maxwell's fish-eye lens as a waveguide crossing medium based on quasiconformal transformation optics is designed and implemented on a silicon-on-insulator platform. Two approaches were taken to realize the designed lens: graded photonic crystal and varying the thickness of the silicon slab waveguide. Three-dimensional numerical simulations show that the designed multimode waveguide crossing has an ultrawide bandwidth from 1260 to 1675 nm with a compact footprint of only 3.77×3.77 μm
. For the first three transverse electric modes (TE0, TE1, and TE2), the designed waveguide crossing exhibits an average insertion loss of 0.24, 0.55, and 0.45 dB; a crosstalk of less than -72, -61, and -27 dB; and a maximum return loss of 54, 53, and 30 dB, respectively. The designed waveguide crossing supports low-distortion pulse transmission with a high fidelity factor of 0.9857. Furthermore, the proposed method can be expanded to design waveguide crossings with an even higher number of supporting modes by increasing the size of the lens.</description><identifier>ISSN: 1559-128X</identifier><identifier>EISSN: 2155-3165</identifier><identifier>EISSN: 1539-4522</identifier><identifier>DOI: 10.1364/AO.58.004647</identifier><identifier>PMID: 31251284</identifier><language>eng</language><publisher>United States: Optical Society of America</publisher><subject>Bandwidths ; Computer simulation ; Crosstalk ; Data transmission ; Fisheye views ; Insertion loss ; Lenses ; Multiplexing ; Photonic crystals ; Silicon ; Transverse electric modes</subject><ispartof>Applied optics (2004), 2019-06, Vol.58 (17), p.4647-4653</ispartof><rights>Copyright Optical Society of America Jun 10, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-a098a8b71df8832fd9be7a147446111ef4d275670b26864ff5ea731c6ca1284d3</citedby><cites>FETCH-LOGICAL-c357t-a098a8b71df8832fd9be7a147446111ef4d275670b26864ff5ea731c6ca1284d3</cites><orcidid>0000-0001-9160-574X ; 0000-0003-2295-6276 ; 0000-0002-0284-3947</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3245,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31251284$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Badri, S Hadi</creatorcontrib><creatorcontrib>Rasooli Saghai, H</creatorcontrib><creatorcontrib>Soofi, Hadi</creatorcontrib><title>Multimode waveguide crossing based on a square Maxwell's fisheye lens</title><title>Applied optics (2004)</title><addtitle>Appl Opt</addtitle><description>Mode-division multiplexing (MDM) is an emerging large-capacity data communication technology utilizing orthogonal guiding modes as independent data streams. One of the challenges of multimode waveguide routing in MDM systems is decreasing the mode leakage of waveguide crossings. In this article, a square Maxwell's fish-eye lens as a waveguide crossing medium based on quasiconformal transformation optics is designed and implemented on a silicon-on-insulator platform. Two approaches were taken to realize the designed lens: graded photonic crystal and varying the thickness of the silicon slab waveguide. Three-dimensional numerical simulations show that the designed multimode waveguide crossing has an ultrawide bandwidth from 1260 to 1675 nm with a compact footprint of only 3.77×3.77 μm
. For the first three transverse electric modes (TE0, TE1, and TE2), the designed waveguide crossing exhibits an average insertion loss of 0.24, 0.55, and 0.45 dB; a crosstalk of less than -72, -61, and -27 dB; and a maximum return loss of 54, 53, and 30 dB, respectively. The designed waveguide crossing supports low-distortion pulse transmission with a high fidelity factor of 0.9857. Furthermore, the proposed method can be expanded to design waveguide crossings with an even higher number of supporting modes by increasing the size of the lens.</description><subject>Bandwidths</subject><subject>Computer simulation</subject><subject>Crosstalk</subject><subject>Data transmission</subject><subject>Fisheye views</subject><subject>Insertion loss</subject><subject>Lenses</subject><subject>Multiplexing</subject><subject>Photonic crystals</subject><subject>Silicon</subject><subject>Transverse electric modes</subject><issn>1559-128X</issn><issn>2155-3165</issn><issn>1539-4522</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkEtPwkAUhSdGI4juXJtJXOjC4rxnuiQEHwmEjSbumml7B0v6wA4V-fcOgi5c3ZObLyfnHIQuKRlSrsT9aD6UZkiIUEIfoT6jUkacKnmM-kHGEWXmrYfOvF8SwqWI9Snqccpk-Is-msy6cl1UTQ54Yz9h0RVBZW3jfVEvcGo95LipscX-o7Mt4Jn92kBZ3njsCv8OW8Al1P4cnThberg43AF6fZi8jJ-i6fzxeTyaRhmXeh1ZEhtrUk1zZwxnLo9T0JYKLYSilIITOdNSaZIyZZRwToLVnGYqs7u0OR-g273vqm0-OvDrpCp8FvLYGprOJ4xJorhhggT0-h-6bLq2DukCJYwgglEeqLs99VO5BZes2qKy7TahJNnNm4zmiTTJft6AXx1Mu7SC_A_-3ZN_A3z1cyo</recordid><startdate>20190610</startdate><enddate>20190610</enddate><creator>Badri, S Hadi</creator><creator>Rasooli Saghai, H</creator><creator>Soofi, Hadi</creator><general>Optical Society of America</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9160-574X</orcidid><orcidid>https://orcid.org/0000-0003-2295-6276</orcidid><orcidid>https://orcid.org/0000-0002-0284-3947</orcidid></search><sort><creationdate>20190610</creationdate><title>Multimode waveguide crossing based on a square Maxwell's fisheye lens</title><author>Badri, S Hadi ; Rasooli Saghai, H ; Soofi, Hadi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-a098a8b71df8832fd9be7a147446111ef4d275670b26864ff5ea731c6ca1284d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bandwidths</topic><topic>Computer simulation</topic><topic>Crosstalk</topic><topic>Data transmission</topic><topic>Fisheye views</topic><topic>Insertion loss</topic><topic>Lenses</topic><topic>Multiplexing</topic><topic>Photonic crystals</topic><topic>Silicon</topic><topic>Transverse electric modes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Badri, S Hadi</creatorcontrib><creatorcontrib>Rasooli Saghai, H</creatorcontrib><creatorcontrib>Soofi, Hadi</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Applied optics (2004)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Badri, S Hadi</au><au>Rasooli Saghai, H</au><au>Soofi, Hadi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multimode waveguide crossing based on a square Maxwell's fisheye lens</atitle><jtitle>Applied optics (2004)</jtitle><addtitle>Appl Opt</addtitle><date>2019-06-10</date><risdate>2019</risdate><volume>58</volume><issue>17</issue><spage>4647</spage><epage>4653</epage><pages>4647-4653</pages><issn>1559-128X</issn><eissn>2155-3165</eissn><eissn>1539-4522</eissn><abstract>Mode-division multiplexing (MDM) is an emerging large-capacity data communication technology utilizing orthogonal guiding modes as independent data streams. One of the challenges of multimode waveguide routing in MDM systems is decreasing the mode leakage of waveguide crossings. In this article, a square Maxwell's fish-eye lens as a waveguide crossing medium based on quasiconformal transformation optics is designed and implemented on a silicon-on-insulator platform. Two approaches were taken to realize the designed lens: graded photonic crystal and varying the thickness of the silicon slab waveguide. Three-dimensional numerical simulations show that the designed multimode waveguide crossing has an ultrawide bandwidth from 1260 to 1675 nm with a compact footprint of only 3.77×3.77 μm
. For the first three transverse electric modes (TE0, TE1, and TE2), the designed waveguide crossing exhibits an average insertion loss of 0.24, 0.55, and 0.45 dB; a crosstalk of less than -72, -61, and -27 dB; and a maximum return loss of 54, 53, and 30 dB, respectively. The designed waveguide crossing supports low-distortion pulse transmission with a high fidelity factor of 0.9857. Furthermore, the proposed method can be expanded to design waveguide crossings with an even higher number of supporting modes by increasing the size of the lens.</abstract><cop>United States</cop><pub>Optical Society of America</pub><pmid>31251284</pmid><doi>10.1364/AO.58.004647</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-9160-574X</orcidid><orcidid>https://orcid.org/0000-0003-2295-6276</orcidid><orcidid>https://orcid.org/0000-0002-0284-3947</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1559-128X |
ispartof | Applied optics (2004), 2019-06, Vol.58 (17), p.4647-4653 |
issn | 1559-128X 2155-3165 1539-4522 |
language | eng |
recordid | cdi_proquest_miscellaneous_2250638240 |
source | Alma/SFX Local Collection; Optica Publishing Group Journals |
subjects | Bandwidths Computer simulation Crosstalk Data transmission Fisheye views Insertion loss Lenses Multiplexing Photonic crystals Silicon Transverse electric modes |
title | Multimode waveguide crossing based on a square Maxwell's fisheye lens |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T22%3A33%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multimode%20waveguide%20crossing%20based%20on%20a%20square%20Maxwell's%20fisheye%20lens&rft.jtitle=Applied%20optics%20(2004)&rft.au=Badri,%20S%20Hadi&rft.date=2019-06-10&rft.volume=58&rft.issue=17&rft.spage=4647&rft.epage=4653&rft.pages=4647-4653&rft.issn=1559-128X&rft.eissn=2155-3165&rft_id=info:doi/10.1364/AO.58.004647&rft_dat=%3Cproquest_cross%3E2248404213%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2248404213&rft_id=info:pmid/31251284&rfr_iscdi=true |