Structural learning and integrative decomposition of multi-view data
The increased availability of multi-view data (data on the same samples from multiple sources) has led to strong interest in models based on low-rank matrix factorizations. These models represent each data view via shared and individual components, and have been successfully applied for exploratory...
Gespeichert in:
Veröffentlicht in: | Biometrics 2019-12, Vol.75 (4), p.1121-1132 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1132 |
---|---|
container_issue | 4 |
container_start_page | 1121 |
container_title | Biometrics |
container_volume | 75 |
creator | Gaynanova, Irina Li, Gen |
description | The increased availability of multi-view data (data on the same samples from multiple sources) has led to strong interest in models based on low-rank matrix factorizations. These models represent each data view via shared and individual components, and have been successfully applied for exploratory dimension reduction, association analysis between the views, and consensus clustering. Despite these advances, there remain challenges in modeling partially-shared components and identifying the number of components of each type (shared/partially-shared/individual). We formulate a novel linked component model that directly incorporates partially-shared structures. We call this model SLIDE for Structural Learning and Integrative DEcomposition of multi-view data. The proposed model-fitting and selection techniques allow for joint identification of the number of components of each type, in contrast to existing sequential approaches. In our empirical studies, SLIDE demonstrates excellent performance in both signal estimation and component selection. We further illustrate the methodology on the breast cancer data from The Cancer Genome Atlas repository. |
doi_str_mv | 10.1111/biom.13108 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2250634388</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>45238756</jstor_id><sourcerecordid>45238756</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4158-16d6791d5247bb8643312112b4f66116c9cb949b44128fb06e8347f367a288ff3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouq5evCsFLyJ0zeSr6dFvBcWDCt5C2qaSpW3WJFX890ZXPXhwLsPAMy8zD0I7gGeQ6qiyrp8BBSxX0AQ4gxwzglfRBGMscsrgaQNthjBPY8kxWUcbFAhnVPIJOruPfqzj6HWXdUb7wQ7PmR6azA7RPHsd7avJGlO7fuGCjdYNmWuzfuyizV-tecsaHfUWWmt1F8z2d5-ix4vzh9Or_Obu8vr0-CavGXCZg2hEUULDCSuqSgpG0x0ApGKtEACiLuuqZGXFGBDZVlgYSVnRUlFoImXb0ik6WOYuvHsZTYiqt6E2XacH48agCOFY0PSYTOj-H3TuRj-k6xShBHghk5tEHS6p2rsQvGnVwtte-3cFWH26VZ9u1ZfbBO99R45Vb5pf9EdmAmAJvNnOvP8TpU6u725_QneXO_MQnf_dYZxQWXBBPwDz4Yt4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2321578006</pqid></control><display><type>article</type><title>Structural learning and integrative decomposition of multi-view data</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Gaynanova, Irina ; Li, Gen</creator><creatorcontrib>Gaynanova, Irina ; Li, Gen</creatorcontrib><description>The increased availability of multi-view data (data on the same samples from multiple sources) has led to strong interest in models based on low-rank matrix factorizations. These models represent each data view via shared and individual components, and have been successfully applied for exploratory dimension reduction, association analysis between the views, and consensus clustering. Despite these advances, there remain challenges in modeling partially-shared components and identifying the number of components of each type (shared/partially-shared/individual). We formulate a novel linked component model that directly incorporates partially-shared structures. We call this model SLIDE for Structural Learning and Integrative DEcomposition of multi-view data. The proposed model-fitting and selection techniques allow for joint identification of the number of components of each type, in contrast to existing sequential approaches. In our empirical studies, SLIDE demonstrates excellent performance in both signal estimation and component selection. We further illustrate the methodology on the breast cancer data from The Cancer Genome Atlas repository.</description><identifier>ISSN: 0006-341X</identifier><identifier>EISSN: 1541-0420</identifier><identifier>DOI: 10.1111/biom.13108</identifier><identifier>PMID: 31254385</identifier><language>eng</language><publisher>United States: Wiley Periodicals, Inc</publisher><subject>Association analysis ; BIOMETRIC METHODOLOGY ; Breast cancer ; Clustering ; data integration ; Decomposition ; dimension reduction ; Empirical analysis ; Genomes ; Learning ; multiblock methods ; principal component analysis ; structured sparsity</subject><ispartof>Biometrics, 2019-12, Vol.75 (4), p.1121-1132</ispartof><rights>Copyright © 2019 International Biometric Society</rights><rights>2019 The International Biometric Society</rights><rights>2019 The International Biometric Society.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4158-16d6791d5247bb8643312112b4f66116c9cb949b44128fb06e8347f367a288ff3</citedby><cites>FETCH-LOGICAL-c4158-16d6791d5247bb8643312112b4f66116c9cb949b44128fb06e8347f367a288ff3</cites><orcidid>0000-0002-4116-0268 ; 0000-0002-7298-2141</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fbiom.13108$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fbiom.13108$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31254385$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gaynanova, Irina</creatorcontrib><creatorcontrib>Li, Gen</creatorcontrib><title>Structural learning and integrative decomposition of multi-view data</title><title>Biometrics</title><addtitle>Biometrics</addtitle><description>The increased availability of multi-view data (data on the same samples from multiple sources) has led to strong interest in models based on low-rank matrix factorizations. These models represent each data view via shared and individual components, and have been successfully applied for exploratory dimension reduction, association analysis between the views, and consensus clustering. Despite these advances, there remain challenges in modeling partially-shared components and identifying the number of components of each type (shared/partially-shared/individual). We formulate a novel linked component model that directly incorporates partially-shared structures. We call this model SLIDE for Structural Learning and Integrative DEcomposition of multi-view data. The proposed model-fitting and selection techniques allow for joint identification of the number of components of each type, in contrast to existing sequential approaches. In our empirical studies, SLIDE demonstrates excellent performance in both signal estimation and component selection. We further illustrate the methodology on the breast cancer data from The Cancer Genome Atlas repository.</description><subject>Association analysis</subject><subject>BIOMETRIC METHODOLOGY</subject><subject>Breast cancer</subject><subject>Clustering</subject><subject>data integration</subject><subject>Decomposition</subject><subject>dimension reduction</subject><subject>Empirical analysis</subject><subject>Genomes</subject><subject>Learning</subject><subject>multiblock methods</subject><subject>principal component analysis</subject><subject>structured sparsity</subject><issn>0006-341X</issn><issn>1541-0420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouq5evCsFLyJ0zeSr6dFvBcWDCt5C2qaSpW3WJFX890ZXPXhwLsPAMy8zD0I7gGeQ6qiyrp8BBSxX0AQ4gxwzglfRBGMscsrgaQNthjBPY8kxWUcbFAhnVPIJOruPfqzj6HWXdUb7wQ7PmR6azA7RPHsd7avJGlO7fuGCjdYNmWuzfuyizV-tecsaHfUWWmt1F8z2d5-ix4vzh9Or_Obu8vr0-CavGXCZg2hEUULDCSuqSgpG0x0ApGKtEACiLuuqZGXFGBDZVlgYSVnRUlFoImXb0ik6WOYuvHsZTYiqt6E2XacH48agCOFY0PSYTOj-H3TuRj-k6xShBHghk5tEHS6p2rsQvGnVwtte-3cFWH26VZ9u1ZfbBO99R45Vb5pf9EdmAmAJvNnOvP8TpU6u725_QneXO_MQnf_dYZxQWXBBPwDz4Yt4</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Gaynanova, Irina</creator><creator>Li, Gen</creator><general>Wiley Periodicals, Inc</general><general>Blackwell Publishing Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4116-0268</orcidid><orcidid>https://orcid.org/0000-0002-7298-2141</orcidid></search><sort><creationdate>20191201</creationdate><title>Structural learning and integrative decomposition of multi-view data</title><author>Gaynanova, Irina ; Li, Gen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4158-16d6791d5247bb8643312112b4f66116c9cb949b44128fb06e8347f367a288ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Association analysis</topic><topic>BIOMETRIC METHODOLOGY</topic><topic>Breast cancer</topic><topic>Clustering</topic><topic>data integration</topic><topic>Decomposition</topic><topic>dimension reduction</topic><topic>Empirical analysis</topic><topic>Genomes</topic><topic>Learning</topic><topic>multiblock methods</topic><topic>principal component analysis</topic><topic>structured sparsity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gaynanova, Irina</creatorcontrib><creatorcontrib>Li, Gen</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Biometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gaynanova, Irina</au><au>Li, Gen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural learning and integrative decomposition of multi-view data</atitle><jtitle>Biometrics</jtitle><addtitle>Biometrics</addtitle><date>2019-12-01</date><risdate>2019</risdate><volume>75</volume><issue>4</issue><spage>1121</spage><epage>1132</epage><pages>1121-1132</pages><issn>0006-341X</issn><eissn>1541-0420</eissn><abstract>The increased availability of multi-view data (data on the same samples from multiple sources) has led to strong interest in models based on low-rank matrix factorizations. These models represent each data view via shared and individual components, and have been successfully applied for exploratory dimension reduction, association analysis between the views, and consensus clustering. Despite these advances, there remain challenges in modeling partially-shared components and identifying the number of components of each type (shared/partially-shared/individual). We formulate a novel linked component model that directly incorporates partially-shared structures. We call this model SLIDE for Structural Learning and Integrative DEcomposition of multi-view data. The proposed model-fitting and selection techniques allow for joint identification of the number of components of each type, in contrast to existing sequential approaches. In our empirical studies, SLIDE demonstrates excellent performance in both signal estimation and component selection. We further illustrate the methodology on the breast cancer data from The Cancer Genome Atlas repository.</abstract><cop>United States</cop><pub>Wiley Periodicals, Inc</pub><pmid>31254385</pmid><doi>10.1111/biom.13108</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4116-0268</orcidid><orcidid>https://orcid.org/0000-0002-7298-2141</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-341X |
ispartof | Biometrics, 2019-12, Vol.75 (4), p.1121-1132 |
issn | 0006-341X 1541-0420 |
language | eng |
recordid | cdi_proquest_miscellaneous_2250634388 |
source | Oxford University Press Journals All Titles (1996-Current); Wiley Online Library Journals Frontfile Complete |
subjects | Association analysis BIOMETRIC METHODOLOGY Breast cancer Clustering data integration Decomposition dimension reduction Empirical analysis Genomes Learning multiblock methods principal component analysis structured sparsity |
title | Structural learning and integrative decomposition of multi-view data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T20%3A18%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20learning%20and%20integrative%20decomposition%20of%20multi-view%20data&rft.jtitle=Biometrics&rft.au=Gaynanova,%20Irina&rft.date=2019-12-01&rft.volume=75&rft.issue=4&rft.spage=1121&rft.epage=1132&rft.pages=1121-1132&rft.issn=0006-341X&rft.eissn=1541-0420&rft_id=info:doi/10.1111/biom.13108&rft_dat=%3Cjstor_proqu%3E45238756%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2321578006&rft_id=info:pmid/31254385&rft_jstor_id=45238756&rfr_iscdi=true |