Quasi-projective and complete synchronization of fractional-order complex-valued neural networks with time delays

This paper studies quasi-projective synchronization (QPS) and complete synchronization (CS) for a class of fractional-order complex-valued neural networks with time delays by designing suitable controllers. To realize QPS and CS, linear feedback controller and adaptive controller are designed, and a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural networks 2019-10, Vol.118, p.102-109
Hauptverfasser: Li, Hong-Li, Hu, Cheng, Cao, Jinde, Jiang, Haijun, Alsaedi, Ahmed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 109
container_issue
container_start_page 102
container_title Neural networks
container_volume 118
creator Li, Hong-Li
Hu, Cheng
Cao, Jinde
Jiang, Haijun
Alsaedi, Ahmed
description This paper studies quasi-projective synchronization (QPS) and complete synchronization (CS) for a class of fractional-order complex-valued neural networks with time delays by designing suitable controllers. To realize QPS and CS, linear feedback controller and adaptive controller are designed, and a novel fractional-order differential inequality is built by means of Laplace transform and properties of Mittag-Leffler function. By utilizing Lyapunov method, our proposed inequality, fractional-order Razumikhin theorem and some complex analysis techniques, some effective criteria are derived to ensure QPS and CS of the considered networks. Furthermore, the error bound of QPS is obtained. Finally, some numerical results are given to demonstrate the effectiveness of the presented theoretical results.
doi_str_mv 10.1016/j.neunet.2019.06.008
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2250632491</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0893608019301819</els_id><sourcerecordid>2250632491</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-18322c075796745006c7210ccaf04bb567b8b4bf6339189cc1eda240b7c390e33</originalsourceid><addsrcrecordid>eNp9kE1v1DAQhi0EokvhHyDkI5eEsZ3YzgUJVS0gVUJI5Ww5zkT1ksRb29my_fX1aheOnGYOzzsfDyHvGdQMmPy0rRdcF8w1B9bVIGsA_YJsmFZdxZXmL8kGdCcqCRouyJuUtgAgdSNekwvBeNso2W7Iw8_VJl_tYtiiy36P1C4DdWHeTZiRpsPi7mNY_JPNPiw0jHSM1h17O1UhDhjP8J9qb6cVB1quinYqJT-G-DvRR5_vafYz0gEne0hvyavRTgnfnesl-XVzfXf1rbr98fX71ZfbygnJc8W04NyBalUnVdOW053iDJyzIzR930rV677pRylEx3TnHMPB8gZ65UQHKMQl-XiaW357WDFlM_vkcJrsgmFNhvMWpOBNxwranFAXQ0oRR7OLfrbxYBiYo2yzNSfZ5ijbgDRFdol9OG9Y-xmHf6G_dgvw-QRg-XPvMZrkPC4OBx-LbTME__8Nz-mFlHQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2250632491</pqid></control><display><type>article</type><title>Quasi-projective and complete synchronization of fractional-order complex-valued neural networks with time delays</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Li, Hong-Li ; Hu, Cheng ; Cao, Jinde ; Jiang, Haijun ; Alsaedi, Ahmed</creator><creatorcontrib>Li, Hong-Li ; Hu, Cheng ; Cao, Jinde ; Jiang, Haijun ; Alsaedi, Ahmed</creatorcontrib><description>This paper studies quasi-projective synchronization (QPS) and complete synchronization (CS) for a class of fractional-order complex-valued neural networks with time delays by designing suitable controllers. To realize QPS and CS, linear feedback controller and adaptive controller are designed, and a novel fractional-order differential inequality is built by means of Laplace transform and properties of Mittag-Leffler function. By utilizing Lyapunov method, our proposed inequality, fractional-order Razumikhin theorem and some complex analysis techniques, some effective criteria are derived to ensure QPS and CS of the considered networks. Furthermore, the error bound of QPS is obtained. Finally, some numerical results are given to demonstrate the effectiveness of the presented theoretical results.</description><identifier>ISSN: 0893-6080</identifier><identifier>EISSN: 1879-2782</identifier><identifier>DOI: 10.1016/j.neunet.2019.06.008</identifier><identifier>PMID: 31254765</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Algorithms ; Complete synchronization ; Complex-valued neural networks ; Feedback ; Fractional-order ; Neural Networks, Computer ; Quasi-projective synchronization ; Time delays ; Time Factors</subject><ispartof>Neural networks, 2019-10, Vol.118, p.102-109</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright © 2019 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-18322c075796745006c7210ccaf04bb567b8b4bf6339189cc1eda240b7c390e33</citedby><cites>FETCH-LOGICAL-c362t-18322c075796745006c7210ccaf04bb567b8b4bf6339189cc1eda240b7c390e33</cites><orcidid>0000-0003-3133-7119</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0893608019301819$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31254765$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Hong-Li</creatorcontrib><creatorcontrib>Hu, Cheng</creatorcontrib><creatorcontrib>Cao, Jinde</creatorcontrib><creatorcontrib>Jiang, Haijun</creatorcontrib><creatorcontrib>Alsaedi, Ahmed</creatorcontrib><title>Quasi-projective and complete synchronization of fractional-order complex-valued neural networks with time delays</title><title>Neural networks</title><addtitle>Neural Netw</addtitle><description>This paper studies quasi-projective synchronization (QPS) and complete synchronization (CS) for a class of fractional-order complex-valued neural networks with time delays by designing suitable controllers. To realize QPS and CS, linear feedback controller and adaptive controller are designed, and a novel fractional-order differential inequality is built by means of Laplace transform and properties of Mittag-Leffler function. By utilizing Lyapunov method, our proposed inequality, fractional-order Razumikhin theorem and some complex analysis techniques, some effective criteria are derived to ensure QPS and CS of the considered networks. Furthermore, the error bound of QPS is obtained. Finally, some numerical results are given to demonstrate the effectiveness of the presented theoretical results.</description><subject>Algorithms</subject><subject>Complete synchronization</subject><subject>Complex-valued neural networks</subject><subject>Feedback</subject><subject>Fractional-order</subject><subject>Neural Networks, Computer</subject><subject>Quasi-projective synchronization</subject><subject>Time delays</subject><subject>Time Factors</subject><issn>0893-6080</issn><issn>1879-2782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1v1DAQhi0EokvhHyDkI5eEsZ3YzgUJVS0gVUJI5Ww5zkT1ksRb29my_fX1aheOnGYOzzsfDyHvGdQMmPy0rRdcF8w1B9bVIGsA_YJsmFZdxZXmL8kGdCcqCRouyJuUtgAgdSNekwvBeNso2W7Iw8_VJl_tYtiiy36P1C4DdWHeTZiRpsPi7mNY_JPNPiw0jHSM1h17O1UhDhjP8J9qb6cVB1quinYqJT-G-DvRR5_vafYz0gEne0hvyavRTgnfnesl-XVzfXf1rbr98fX71ZfbygnJc8W04NyBalUnVdOW053iDJyzIzR930rV677pRylEx3TnHMPB8gZ65UQHKMQl-XiaW357WDFlM_vkcJrsgmFNhvMWpOBNxwranFAXQ0oRR7OLfrbxYBiYo2yzNSfZ5ijbgDRFdol9OG9Y-xmHf6G_dgvw-QRg-XPvMZrkPC4OBx-LbTME__8Nz-mFlHQ</recordid><startdate>201910</startdate><enddate>201910</enddate><creator>Li, Hong-Li</creator><creator>Hu, Cheng</creator><creator>Cao, Jinde</creator><creator>Jiang, Haijun</creator><creator>Alsaedi, Ahmed</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3133-7119</orcidid></search><sort><creationdate>201910</creationdate><title>Quasi-projective and complete synchronization of fractional-order complex-valued neural networks with time delays</title><author>Li, Hong-Li ; Hu, Cheng ; Cao, Jinde ; Jiang, Haijun ; Alsaedi, Ahmed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-18322c075796745006c7210ccaf04bb567b8b4bf6339189cc1eda240b7c390e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Complete synchronization</topic><topic>Complex-valued neural networks</topic><topic>Feedback</topic><topic>Fractional-order</topic><topic>Neural Networks, Computer</topic><topic>Quasi-projective synchronization</topic><topic>Time delays</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Hong-Li</creatorcontrib><creatorcontrib>Hu, Cheng</creatorcontrib><creatorcontrib>Cao, Jinde</creatorcontrib><creatorcontrib>Jiang, Haijun</creatorcontrib><creatorcontrib>Alsaedi, Ahmed</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Neural networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Hong-Li</au><au>Hu, Cheng</au><au>Cao, Jinde</au><au>Jiang, Haijun</au><au>Alsaedi, Ahmed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quasi-projective and complete synchronization of fractional-order complex-valued neural networks with time delays</atitle><jtitle>Neural networks</jtitle><addtitle>Neural Netw</addtitle><date>2019-10</date><risdate>2019</risdate><volume>118</volume><spage>102</spage><epage>109</epage><pages>102-109</pages><issn>0893-6080</issn><eissn>1879-2782</eissn><abstract>This paper studies quasi-projective synchronization (QPS) and complete synchronization (CS) for a class of fractional-order complex-valued neural networks with time delays by designing suitable controllers. To realize QPS and CS, linear feedback controller and adaptive controller are designed, and a novel fractional-order differential inequality is built by means of Laplace transform and properties of Mittag-Leffler function. By utilizing Lyapunov method, our proposed inequality, fractional-order Razumikhin theorem and some complex analysis techniques, some effective criteria are derived to ensure QPS and CS of the considered networks. Furthermore, the error bound of QPS is obtained. Finally, some numerical results are given to demonstrate the effectiveness of the presented theoretical results.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>31254765</pmid><doi>10.1016/j.neunet.2019.06.008</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-3133-7119</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0893-6080
ispartof Neural networks, 2019-10, Vol.118, p.102-109
issn 0893-6080
1879-2782
language eng
recordid cdi_proquest_miscellaneous_2250632491
source MEDLINE; Elsevier ScienceDirect Journals
subjects Algorithms
Complete synchronization
Complex-valued neural networks
Feedback
Fractional-order
Neural Networks, Computer
Quasi-projective synchronization
Time delays
Time Factors
title Quasi-projective and complete synchronization of fractional-order complex-valued neural networks with time delays
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T21%3A26%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quasi-projective%20and%20complete%20synchronization%20of%20fractional-order%20complex-valued%20neural%20networks%20with%20time%20delays&rft.jtitle=Neural%20networks&rft.au=Li,%20Hong-Li&rft.date=2019-10&rft.volume=118&rft.spage=102&rft.epage=109&rft.pages=102-109&rft.issn=0893-6080&rft.eissn=1879-2782&rft_id=info:doi/10.1016/j.neunet.2019.06.008&rft_dat=%3Cproquest_cross%3E2250632491%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2250632491&rft_id=info:pmid/31254765&rft_els_id=S0893608019301819&rfr_iscdi=true